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Abstract

We propose a model to show that when innovation in a given field becomes more
lucrative, its direction can be distorted even though its rate rises. Higher payoffs attract
innovators, making the R&D supply side more competitive. This competition endoge-
nously shifts effort toward less promising but quicker-to-invent projects. We empirically
quantify the magnitude of this distortion, in the context of pharmaceutical innovation
during the Covid-19 pandemic. In the social planner solution, 74 percent more firms
would have worked on vaccines and 17 percent more on novel compounds. Policy reme-
dies include advance purchase commitments based on ex-ante value, targeted research
subsidies, and antitrust exemptions for joint research ventures.
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1 Introduction

What happens when innovation in a particular field becomes more valuable or less costly? For
instance, a demand shock can increase payoffs, as with pharmaceutical innovation during a
pandemic. Policy changes like stronger patents, innovation prizes, and research subsidies can
make innovation more profitable. A complementary invention may facilitate the development
of new ideas, such as machine-learning breakthroughs for drug discovery. The first-order effect
of any of these changes in a particular field is to increase the rate of innovation.

These exogenous payoff shifters change more than just the rate of R&D, however. While
higher payoffs mean firms are willing to pay the fixed cost of setting up a research program,
firm entry alters market structure, which endogenously affects the direction of invention. That
is, the particular research projects firms pursue are a function of the nature of competition.
As R&D competition becomes more intense, firms shift effort away from long-run, high-
value projects, and toward short-run, less-valuable partial substitutes. Why? Lower-quality,
quick-to-discover inventions decrease the ex-post marginal value of high-quality inventions
that are partial substitutes. This externality is ignored when firms choose R&D portfolios.
In equilibrium, the industry becomes more likely to “race” toward projects that can be
completed quickly.

We will first formalize the idea that exogenous shifts in underlying payoffs distort the direction
of innovation relative to the socially optimal one, using a simple theoretical model of invention
choice with endogenous market structure. We then empirically implement this model to
estimate the magnitude of this directional distortion.

Our analysis exploits the extensive and detailed documentation on pharmaceutical develop-
ment during the Covid-19 pandemic. We use proprietary data on firm characteristics and
project choice of entrants during the first six months of the pandemic (i.e., before the in-
troduction of major government subsidies and other interventions).1 This setting is ideal
for four reasons. First, there is well-documented data on hundreds of entrants working on
Covid-19 projects. Second, there are well-defined choices of direction such as “vaccine or
therapeutic,” with vaccines widely believed ex-ante to be more difficult to develop and more
socially valuable (see, e.g., Xue and Ouellette, 2020). Third, there is standardized data on
each firm’s prior research capabilities. Fourth, we know exactly when the crisis started, and

1Beginning in late May 2020, governments introduced large vaccine-directed subsidies, such as Operation
Warp Speed in the United States. Such public interventions are likely to dominate (or at least confound) the
market-structure effect that this paper highlights. Thus, we exclusively focus on the first six months of the
pandemic.
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we observe a shock to its severity in early March 2020 when the epidemic globalized.

In the social planner solution, our estimates show that 74 percent more firms would have
worked on vaccines and 17 percent more on novel compounds between January and June 2020.
Of the 74 percent gap, 10.2 percent remains even if we assume pharmaceutical firms earned
the full social surplus of their inventions: strategic racing rather than just underappropriation
slowed vaccine development.

Our results principally build on two strands of the innovation literature, one theoretical and
one empirical. On the theoretical side, the potential for strategic racing either in terms of
the quantity of R&D (Loury (1979); Reinganum (1982)) or its direction (Bryan and Lemus
(2017); Hopenhayn and Squintani (2021)) has long been noted. This literature broadly shares
the idea that innovators do not account for how their research effort affects the probability
of success by other firms. We extend this insight by endogenizing market structure, showing
that since the extent of strategic racing is increasing in R&D market fragmentation, “hot”
technological areas that attract many entrants are more at risk of directional distortion.

There is a nascent empirical industrial organization literature studying the impact of market
structure on innovation outcomes (Goettler and Gordon (2011), Igami and Uetake (2020)).
This literature, however, does not speak to the direction of innovation. In non-structural
work on invention direction, Moser (2005) suggests that inventors in countries without strong
patent protection shift effort toward inventions which can be protected by secrecy, such as
Swiss watches. Acemoglu et al. (2012) shows that factor scarcity and inventor subsidies
affect the direction of invention in the context of climate change policy. Hanlon (2015) does
the same when studying textile innovation at the time of the Civil War. These studies
demonstrate that R&D direction shifts to areas where inventor rewards are higher and reacts
to changes in factor prices and technological substitutability. However, to our knowledge
there are no other empirical studies on distorted invention direction based on endogenous
market structure, structural or otherwise.

Finally, there has been a great deal of research using the Covid-19 pandemic as a case for
innovation policy. This literature is vast; however, of particular note are Gross and Sampat
(2021) on how Covid-19 policy compares, favorably or otherwise, to World War II “crisis”
innovation, Agarwal and Gaule (2021) showing that the quantity of scientific research can in
some cases be quite elastic, without crowd-out, when sufficient public spending is directed
toward a particular goal, and Kremer et al. (2022) on incentivizing vaccine production with
advanced market commitments.
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2 A Model of Directional Inefficiency

Consider the following simple framework to analyze the impact of an exogenous payoff shifter.
A payoff shifter is any exogenous change that scales up the payoff, or scales down the fixed
R&D costs, of innovations in a particular field. For example, a demand or technology shock
may increase the payoffs of all inventions, or a new regulatory policy may make it less
burdensome for firms to enter. This exogenous payoff shifter induces entry, which exacerbates
R&D competition among inventors. They therefore face more incentive to “race” toward
easier and lower-value research, even when doing so is socially inefficient. Because the value
of inventions ex-post depends on what substitutes exist, these low-value inventions decrease
the payoff inventors working on more difficult projects with higher ex-ante value will earn.

Projects: There are two partially-substitute projects, j ∈ {A,B}, characterized by three
project-specific parameters: (1) the ease of invention λj; (2) the lump-sum expected payoff
π1,j to the inventing firm when nothing has been invented yet; and (3) the lump-sum expected
payoff π2,j to the firm that invents j if the other project has already been invented. This
captures the notion that the payoff of each project depends on the history of discoveries.
For example, let the expected value of a vaccine A be 10 and of a treatment drug B be 6
when nothing has been invented yet. Once either has been invented, let the marginal value
of the other invention fall in half. For instance, once the vaccine is discovered, the marginal
benefit of the drug falls to, say, 3, since less treatment is needed in a partially immunized
population. Likewise, if the drug is invented first, the marginal benefit of the vaccine A may
fall to 5 since effective therapeutics will lead only high-risk populations to vaccinate. In this
case, π1,A = 10, π1,B = 6, π2,A = 5, and π2,B = 3. Note that inventing A first and B second is
socially optimal: the social payoff is 13 instead of 11. For exposition, we present our results
with lump-sum payoffs, interpreted as an infinitely long patent on a narrow invention. In
Online Appendix G, we relax this assumption in the case of flow payoffs that are interrupted
by new discoveries. The primary qualitative insights are unchanged.

Firms: Each firm is endowed with one perfectly divisible unit of effort. A firm that wants to
enter the R&D race must pay a one-time fixed cost F . Each firm that enters chooses what
fraction of its research capacity to allocate towards each project at each point in time. We
denote by xijt ∈ [0, 1] the research effort allocated toward project j by firm i at time t.

Timing: Time is continuous and the discount rate is r > 0. All firms first simultaneously
choose whether to enter. Conditional on that entry, at any given time t, firms simultaneously
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allocate their research capacity arbitrarily across available projects.2 The probability that
firm i invents j before time t is given by an exponential distribution of parameter λjxijt.
This implies that the research production function is constant returns to scale on a given
project, both at the individual firm level and in the aggregate. The game ends after the two
inventions have been discovered.

Exogenous Payoff Shifter: An exogenous payoff shifter scales all payoffs up or reduces
the fixed cost of entry, i.e., the ratio πt,i

F
increases by a factor of η > 1.3

We make three additional assumptions to clarify precisely the nature of directional dis-
tortions. First, we assume that the payoff of any invention equals its social surplus. In
equilibrium, scaling this payoff up or down will only affect direction choice to the extent
that it changes the total number of firms that enter. To emphasize the nature of directional
distortions rather than underappropriation we, therefore, assume that firms fully capture the
social value of their inventions.4 Second, we assume that project A is difficult, yet valuable
(a long-term project), whereas B is easier, yet less valuable (a short-term project). That is,
π1,A > π1,B and λB > λA. Moreover, we assume that A and B are partial substitutes and
inventing A first is the socially optimal discovery path, that is, π1,A+π2,B > π1,B +π2,A.5 For
instance, A may be a vaccine and B a therapeutic during an epidemic. Third, we assume that
λBπ1,B > λAπ1,A. This implies that the flow payoff of the short-run project is larger than
the flow payoff of the long-run project. If this were not true, then the value of the short-run
project would be so low that no firm would ever work on it in equilibrium, regardless of
discount rate or market structure.

2Note that once A has been invented, B is the only possible project, and vice versa.
3In practice, the shift in payoffs may not be uniform and could be time dependent. We abstract away

from these cases because we are interested in changes in the direction of innovation caused by the endogenous
change in market structure rather than an exogenous change in the relative value of the inventions.

4Alternatively, this can be interpreted as saying that we show the extent of directional distortion even if
payoffs are high enough that inventors completely appropriate the expected value of their inventions.

5We do not directly model the dynamic demand system. However, for the sake of intuition, consider two
cases which generate this pattern. First, let entry of the second project be completely unprofitable after the
first invention induces the existence of complements, regulatory barriers or network effects. Then we have
that π2,B = π2,A = 0 and our condition simplifies to π1,A > π1,B . Alternatively, there may be a potential
invention in a related industry using the same researchers and capital, which has an expected flow payoff of
πC . If the ex-post marginal expected flow payoff of the second project falls below πC , firms will no longer
pursue it.
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2.1 Planner Optimum

Consider first the efficient allocation of research across projects by a fixed set of N firms.
Following the invention of either j ∈ {A,B}, the planner will allocate all the research capacity
towards the remaining project, denoted by k ∈ {A,B}, with k 6= j. The expected social
continuation value following the invention of project j is then

V S
j =

∫ ∞
0

π2,k ·Nλke−Nλkt · e−rtdt = Nλk
r +Nλk

π2,k (1)

In this equation, Nλke−Nλkt is the density of the time of arrival of project k when all research
capacity is allocated toward that project. Let Pj = π1,j + V S

j therefore be the planner’s
expected payoff at the time j is invented if it is invented first. When nothing has been
discovered yet, the planner chooses how to allocate effort across A and B to solve

max
(xj)j∈{A,B}

∫ ∞
0

∑
j∈{A,B}

Pj · λjxje−(λAxA+λBxB)·t · e−rtdt

subject to xA + xB = N and xj ≥ 0, for j ∈ {A,B}. The probability that no innovation has
arrived before time t is e−(λAxA+λBxB)t, and the rate at which project k is invented is λkxk.
In the following lemmas and propositions, all proofs are left to Online Appendix F.

Lemma 1. The planner optimally allocates all researchers to project A first and then to
project B if and only if:6

λAPA ≥ λBPB −
N(λB − λA)
r +NλA

λAPA. (2)

As N grows arbitrary large, Equation (2) becomes π1,A + π2,B ≥ π1,B + π2,A. That is, for
sufficiently high N , the optimal first project is the more difficult, long-term project A. Why?
Though the future is discounted, when the number of firms performing R&D is high enough,
both projects can be finished arbitrarily quickly. Therefore, a planner wants firms to work
on the highest value inventions ignoring their difficulty.

Let us now endogenize entry. Denote by V (N) the social payoff under the efficient research
6Bryan and Lemus (2017) explain the intuition for why the planner does not simultaneously research

multiple projects. Intuitively, when the research production function has either constant or increasing returns
to scale, there is always a “best” research line in expectation. Mathematically, the planner problem is a linear
functional with linear constraints, hence the Charnes-Cooper transformation implies the optimum is a corner
solution in the related linear program.
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direction with N firms. The optimal number of active firms, denoted by N∗, solves

max
N∈{0,1,2,...}

V (N)− F ·N

It is straightforward to show that V (N) is a homogeneous function in scaling all payoffs π
by a constant factor. Therefore, scaling all payoffs π (e.g., shock in demand that makes all
inventions more valuable) or reducing entry costs F (e.g., a reduction in regulatory burdens)
has the same effect on the optimal number of firms.

Proposition 1. We have:

1. An exogenous payoff shifter makes it socially optimal to increase the number of firms.

2. When the exogenous payoff shift is intense (η is sufficiently large), it is optimal to
allocate firms toward the long-term project.

Proposition 1 is intuitive. Shocks that scale payoffs or reduce entry costs affect the direction
of invention only indirectly through the number of firms. For instance, during a pandemic
it is worthwhile for the planner to pay the fixed entry cost for more firms. As we noted
above, when the number of firms who enter is sufficiently high, any project can be invented
arbitrarily quickly, hence the planner optimally directs firms to work on high-value projects
even when they are difficult.

2.2 Equilibrium Allocation of Firms to Projects

In this section, we study the equilibrium allocation of firms to projects (henceforth “equilib-
rium”). In contrast to the social planner, the expected private continuation payoff after the
first invention is

Vj = 1
N
V S
j

That is, following the first successful invention, all firms can work on the remaining invention
and each firm is equally likely to invent it.

Let a−ij = ∑
k 6=i xkj be the cumulative effort by firms other than i on project j, and let

P̃j = π1,j + Vj. The best response of firm i solves

max
(xij)j∈{A,B}

∫ ∞
0

∑
j∈{A,B}

(P̃j · λjxij + Vj · λja−ij)e−(λA(a−iA+xiA)+λB(a−iB+xiB))·t · e−rtdt
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subject to xiA + xiB = 1 and xij ≥ 0, for j ∈ {A,B}. The probability that no innovation
has arrived before time t is e−(λA(a−iA+xiA)+λB(a−iB+xiB))·t, and the rate at which project k is
invented by firm i is λkxik. If rivals discover project k first, at rate λka−ik, firm i loses the
immediate payoff π1,k, but can still work on the remaining invention.

Lemma 2. Suppose that the efficient research direction is project A when N firms have
entered. There exists an equilibrium where all firms work on A if and only if

λAPA ≥ λBPB −
N(λB − λA)
r +NλA

λAPA + (N − 1)(λBπ1,B − λAπ1,A). (3)

The condition that guarantees that A is the efficient direction is distorted by a strategic
racing externality, captured by the term (N − 1)(λBπ1,B − λAπ1,A). The strategic racing
externality is proportional to the difference of immediate flow payoffs and strictly increasing
in the number of firms. Competing firms do not internalize that, by directing their innovation
effort towards the short-term project, they lower the probability that the long-term project—
which is a more difficult but more socially valuable invention—is invented first by other firms.
Intuitively, this is similar to business stealing from entrants with fixed costs, with the added
dimension that more “business,” as measured by the fraction of total surplus earned, can
be stolen by deviating toward quick projects. Thus, even if the level of R&D is efficient, in
equilibrium firms may deploy their research in an inefficient direction.

This externality has a particularly worrying consequence when invention in a given field
becomes more lucrative:

Proposition 2. We have:

1. An exogenous payoff shifter weakly increases the number of firms in a symmetric equi-
librium.

2. When the innovation shift is intense (η is sufficiently large), all firms working on the
efficient, long-term project is not an equilibrium.

Again, scaling payoffs or reducing entry costs changes directional choices only through the
number of firms. If the number of firms were held constant, the fact that all inventions
in a given area see their payoffs increase by the same factor means that the optimal (or
equilibrium) choice of which project to work on does not change. However, when we allow
entry to be endogenous, these higher payoffs mean more firms can enter and still cover
the fixed cost of performing R&D. More entry for the planner means all inventions come
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relatively quickly, hence it is not worth sacrificing high-value inventions for low-value but
quick ones. The opposite is true in the market equilibrium. More entry means that each firm
cares more about the payoff they can get from being the first to invent something, and less
about anything invented after the first for which a given firm accrues only 1

N
of the payoff in

expectation.7

Summing up, higher payoffs mean more firms enter in equilibrium, which means everything
can be invented quicker, so it would be socially optimal to work on the highest value projects.
From each firm’s perspective, however, competing against more firms increases the incentive
to work on quick, low-value projects by making it relatively more important to be “first”
rather than “best”.8

Finally, is there too much or too little entry overall? In general, there can be under- or
over-entry in equilibrium due to two opposing forces. First, more firms means the waiting
time until the first invention is shorter, hence all firms get to work on the next invention
sooner. This is a positive externality, so the market solution will tend to under-supply firms.
Second, when firms independently choose whether to enter, they do not account for how their
entry lowers the profits captured by other firms. This is a negative externality, so the market
solution will tend to over-supply firms.

Proposition 3. A sufficiently large payoff shifter causes over-entry relative to the efficient
number of firms.

When the entry of each firm involves business stealing, entry is more valuable to firms than to
society (e.g. Mankiw and Whinston, 1986). With large payoffs or low entry costs, the business
stealing motive overwhelms the positive externality firms impose on each other by allowing
each firm to work on the continuation project more quickly. Combining these propositions,
with free entry and payoffs equal to the social value of any invention, there will be excessive
entry and the firms that enter will work on inefficiently short-term projects. Even if we
manage to get the rate of entry to the optimal level, the firms that enter have too much
incentive to work on short-term, low-value projects.

7Part 2 in Proposition 2 holds even if the firms only appropriate a fraction of the social surplus. Conditional
on the number of competitors, firm choices are unaffected when payoffs are scaled down, but the equilibrium
number of firms that enter decreases. A large increase in the payoff to all projects will distort directional
choices, even after accounting for fewer firms entering in equilibrium due to imperfect appropriation.

8Entry of rivals exacerbates the racing effect, regardless of whether they are for profit or non-profit. Thus,
the entry of large non-profit organizations in the right direction may push for-profit firms to work on short-
term solutions. The Milken Institute Covid-19 treatment and vaccine tracker attempts to track not just
private pharmaceutical projects, but also public studies. As of May 4, 2020, 84 percent of Covid-19 projects
were wholly private or partially sponsored by the private sector.
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2.3 Policy Interventions

If the equilibrium firm allocation is inefficient, what can be done? The theoretical solution is
straightforward: increase the payoff of the long-run project relative to the short-run project,
or reduce strategic racing behavior by permitting research joint ventures and similar col-
laborative regimes. This is standard Pigouvian economics, where we can fix an inefficiency
either with taxes and subsidies, or by directly removing the externality. Patent buyouts
(Kremer, 1998), where the government buys a patent in order to remove the deadweight loss
of monopoly pricing, do not solve our problem. Indeed, by increasing the return to invention,
it induces more entry and makes directional distortion worse. The same is true of generic
rather than targeted research subsidies. The fundamental problem is that the government
needs to simultaneously induce entry and prevent the firms that enter from deviating to
quick, low-value projects.

Three common policies achieve this result in the context of the stylized model above. First,
research joint ventures on projects that are expected to be harder to invent than most inven-
tions in a sector ought to be encouraged.9

Second, targeted subsidies, incentivizing only difficult, high-value inventions, while permit-
ting unsubsidized research on other projects, simultaneously induce entry while avoiding a
directional distortion. While in some cases targeted subsidies can be seen as the government
“picking winners,” the nature of socially-valuable inventions is often widely known.10

Finally, advanced market commitments (AMCs) can be used, with a twist. The reason firms
deviate to short-run solutions is partly because the marginal value of the ex-ante best project
falls once partial remedies exist. This collapse may not be linear. For instance, imagine that a
partially effective drug is half as good as a vaccine from the perspective of a government. Once
the drug exists, firms will consider whether to keep working on the vaccine and receiving this
lower payment, or to work on some outside option. If the probability of finishing a vaccine first
is quite low, and the ex-post expected profit of a vaccine does not exceed that outside option,
firms will deviate to working on the drug and the vaccine will not be invented. An AMC

9See Grossman and Shapiro (1986) for a deeper analysis of the antitrust issues with research collaborations.
In April 2020, Sanofi and GlaxoSmithKline, normally rivals, formed a joint research venture to develop
a Covid-19 vaccine. See https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-to-join-forces-in-
unprecedented-vaccine-collaboration-to-fight-covid-19/ for details

10We use data only through the first six months of the pandemic because targeted subsidies toward vaccines
became a major part of the policymaker arsenal with the announcement of “Operation Warp Speed” subsidies.
The May 4th, 2020 issue of the New York Times discussed existing large subsidy programs for Covid-19
inventions, noting that they were targeted broadly at “diagnostics, therapeutics, and treatments” rather
than vaccines (Athey et al., 2020).
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committing to pay the ex-ante social value of an invention, even if future inventions lower
their value, can completely remedy directional inefficiency. Contemporaneous estimates of
the value of targeted Covid-19 vaccine AMCs argued that an advance commitment of nearly
$40 billion, with coordinated allocation to high-risk populations, increases welfare by avoiding
ex-post bidding wars for potentially limited vaccine supplies (Snyder et al., 2020).

3 Measuring the Magnitude of Directional Inefficiency

Given the theoretical distortion identified in the previous section, we are interested in two
empirical questions. First, when can we identify the key primitives that drive project choice
(i.e., expected payoffs and entry costs) from observed R&D data? Second, what is the
magnitude of competition-driven inefficiency in the direction of invention? Consider the
case of pharmaceutical research during the Covid-19 pandemic. We will begin by showing
a series of stylized facts about the small fraction of Covid-19 research devoted to vaccines,
particularly after the pandemic becomes more severe. We will then discuss how to estimate
an empirical model of R&D decisions capturing the possibility of strategic racing, and use
that model to investigate Covid-19 R&D racing empirically.

3.1 Descriptive Evidence from Covid-19 Pipelines

Before estimating entry into Covid-19 research structurally, we present descriptive evidence
on the Covid-19 innovation race. We use proprietary data from “BioMedTracker,” a dataset
produced by Informa PLC, which tracks the development history of pharmaceutical drug
projects. For every pharmaceutical drug project, the dataset provides information that in-
cludes when development started, the identity of the developer, the type of drug project
(e.g., vaccine or biological drug), whether it has undergone clinical trials (and when), and
whether it has been approved. This information allows us to keep track of the current and
past research pipelines of pharmaceutical companies.11 See Online Appendix Section A for
details about the data construction.12

Figure 1 (Panel A) shows that the rate of Covid-19 therapies in research pipelines exceed that
11We complement these data with information from public sources, such as recent viral epidemics.
12We cross-checked our data with a publicly available report by the Milken Institute on Covid-19 therapies.

Both datasets track roughly the same projects in development. See the Online Appendix for more details.
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Figure 1: Panel A shows the number of drug therapies in pharmaceutical pipelines, by pan-
demic/epidemic. Panel B shows the number of Covid-19 drug therapies in research pipelines, by
drug classification .
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Notes: Panel A: The figure plots the number of drug therapies (at all stages of development) in research
pipelines, by disease. The beginning of the respective pan/epidemics are December 1, 2019 (Covid-19), April
1, 2015 (Zika), December 16, 2013 (Ebola), and January 1, 2009 (H1N1). Covid-19 therapies measured as
of June 15, 2020. The projected number of breast cancer drug therapies are provided as a reference and are
computed using the formula entry-rate*time, where entry-rate is the average number of new breast cancer
drug therapies per day between the years 2007 and 2016. The vertical line indicates March 11, 2020, the date
the WHO declared a global pandemic. Panel B: The figure plots the number of Covid-19 drug therapies (at
all stages of development) in research pipelines, by type of drug.

of Ebola, Zika, H1N1, and even breast cancer by at least an order of magnitude.13 Forty-one
of these drug therapies were already undergoing clinical trials as of June 15, 2020 (8 were at
phase I, 15 at phase II, and 18 at phase III). This exceeds the total first-year number of drug
therapies for Zika and Ebola, including all those that never reached clinical trials.14 The figure
also shows a clear visual break in the rate at which therapies entered pharmaceutical pipelines
roughly 100 days after the beginning of the outbreak. This coincides with the spread of large-
scale community infection outside of Asia, the first large-scale regional lockdown outside of
China (in Northern Italy, on March 8, 2020), and the global stock market decline (the Dow
Jones lost nearly 1/3 of its value between March 4 and March 23, 2020). In the analysis that
follows, we will delineate this increase in the severity of Covid-19 with the March 11, 2020
WHO declaration of a global pandemic.15

Though the rate of Covid-19 entry is very high, especially after mid-March, the type of entry
13Cancer in general received more NIH funding than any other disease category (NIH, 2020), and breast

cancer the most of any cancer type. Breast cancer is also the cancer with by far the most therapies entering
clinical trials over the past quarter century (Nixon et al., 2017).

14See footnotes 1 and 10 as a justification for choosing June 2020 as the cutoff date.
15Formally, a Wald supremum test identifies this structural break as occurring on March 4, 2020. Our

empirical results are robust to the precise structural break date chosen.
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Table 1: Entrant characteristics, by repurposed/not repurposed and entry time

Not Repurposed Repurposed Diff. Before March 11 After March 11 Diff.
Vaccine .448 .017 -.431 .464 .186 -.278

[0] [0]
Repurposed 0 1 1 .357 .534 .177

- [.015]
Establishment year 2009.557 2005.506 -4.052 2005.571 2007.875 2.304

[.001] [.152]
Pipeline size 50.247 67.258 17.011 84.143 54.064 -30.079

[.284] [.221]
Experience w/ vaccines .496 .096 -.401 .5 .222 -.278

[0] [0]
Experience w/ antivirals .593 .32 -.272 .731 .379 -.351

[0] [0]
Experience w/ infectious diseases .696 .41 -.286 .75 .49 -.26

[0] [0]

Notes: The table compares entrant covariates by timing of entry and whether the drug therapy is repurposed.
An observation is a firm–drug therapy combination. ‘Vaccine’ and ‘Repurposed’ are indicators for whether
the drug is a vaccine or a repurposed drug, respectively. ‘Pipeline size’ and ‘Establishment year’ are measures
of firm size and age, respectively. The variables ‘Experience w/ vaccines’, ‘Experience w/ infectious diseases’,
and ‘Experience w/ antivirals’ are indicators constructed based on the research pipeline of each firm. p-values
of two-sided tests for equality of means in brackets.

shows striking patterns. Figure 1 (Panel B) shows entry by drug classification over time.
The figure shows a trend away from vaccines after the perceived severity of the pandemic
increases in early March. Along these lines, Online Appendix Figure B.1 shows a trend
towards repurposed drugs starting in early March.16 In particular, the share of vaccines
among all drug therapies is 46 percent prior to March 11, and 19 percent following the
pandemic declaration. Likewise, the share of non-repurposed drugs is 64 percent prior to
March 11 and 47 percent thereafter. That is, the rate of entry of vaccines is essentially
constant before and after the globalization of the pandemic in mid-March, while the rate of
entry of non-vaccines, especially repurposed drugs, increased dramatically.

Can firm experience explain these patterns? Table 1 shows that post-March 11, Covid-
19 entrants have less experience with vaccines, antivirals, and with infectious diseases, and
have a smaller pipeline, though they are not wholly inexperienced. Firms that enter after
March 11th are 17.7 percentage points more likely to repurpose therapies from their existing
portfolio, and 27.8 percentage points more likely to develop non-vaccine drug therapies. That
is, after the crisis became more severe, there was more entry of small and less experienced
firms, and a change in the direction of innovation towards more repurposing and non-vaccine
drug therapies.

16Repurposed drugs are defined as those which existed prior to the beginning of the relevant outbreak and
which have multiple indications.
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To examine whether a particular type of firm was driving the change in the direction of
innovation after March 11th, we use a logistic regression to uncover the relationship between
project choice and firm characteristics, controlling for whether the firm entered before or
after March 11th. Table 2 shows a negative and statistically significant coefficient on the
post March 11 dummy, which indicates that firms that enter after March 11th are less likely
to work on vaccines (all else equal). This is true for the full sample of Covid-19 entrants
(Table 2, Column 1), but also true for the subset of experienced firms that were plausibly
capable of developing a Covid-19 vaccine (Table 2, Column 2).17 That is, even experienced
firms were shifting away from the vaccine project after March 11, which suggests that the
directional change cannot be solely attributed to the increased entry rate of inexperienced
firms after March 11.18

These facts are consistent with the theory in Section 2. Higher payoffs attract entry from
firms that would otherwise not find the fixed cost of R&D worth paying. These firms expect
lots of competition in drug development, especially after the pandemic increases in severity.
Therefore, on the margin effort shifts toward lower-value, quicker projects.

3.2 Empirical model

In order to quantitatively match real-world data, we extend the theoretical model in three
ways. First, we will assume that firms enter sequentially rather than simultaneously at the
beginning of the game. Second, we allow for different firm types which are defined by firm-
specific prior research experience. Third, we allow the cost of working on a project to be
both type- and project-specific, rather than identical for all firms and projects as in Section
2. This introduces heterogeneity in research capacity, making some firms better at research
than others, but it also allows for project-specific heterogeneity (i.e., a given project may be
more costly for some firms even conditional on research experience).

The exogenous payoff shifter that we consider is the global pandemic declaration of Covid-
17Specifically, we define a firm to be experienced if it has had a vaccine project and a drug project for an

infectious disease prior to Covid-19 in their research pipelines. Online Appendix Table B.1 shows that 76
percent of experienced firms that entered before March 11 chose to develop a vaccine, while only 51 percent
of experienced firms that entered after March 11 did so.

18Online Appendix Figure B.2 shows public funding pledges over time for vaccine and non-vaccine projects.
The figure shows that by the end of our sample period, vaccine and non-vaccine projects had received an
equal amount of public funding, which suggests that public funding is unlikely to have been behind the shift
away from vaccines after March 11. If anything, the figure shows that public funding for vaccine projects
accelerated after March 11, which should have at least partially counteracted the “racing distortion.”
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Table 2: Project choice among Covid-19 entrants: Logit regressions

(1) (2)
Experienced

All firms firms subsample
Dependent variable: Vaccine

Post March 11 -1.071∗∗∗ -1.032∗
(0.393) (0.603)

Pipeline size -0.000 -0.001
(0.001) (0.002)

Establishment year 0.074∗∗∗ 0.056∗
(0.023) (0.033)

Experience w/ vaccines 3.950∗∗∗
(0.676)

Experience w/ infectious diseases -0.027
(0.661)

Experience w/ antivirals -0.940
(0.817)

Observations 352 80
R2

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors in parentheses. An observation is a drug
project, and the outcome variable can take one of two values: vaccine or non-vaccine drug project. ‘Post
March 11’ is an indicator that takes the value 1 if the firm’s entry date is after March 11, 2020. The variable
‘Pipeline size’ measures the number of drug therapies that the firm has developed (active or inactive) prior
to Covid-19. The variables ‘Experience w/ vaccines’, ‘Experience w/ infectious diseases’, and ‘Experience
w/ antivirals’ are indicators constructed based on the research pipeline of each firm. The experienced firms
subsample considers only firms that have had a vaccine project and a drug project for an infectious disease
prior to Covid-19 in their research pipelines.

19.19 There is a set of potential entrants. Each entrant has a type θ ∈ Θ, and the distribution
of types is common knowledge. Firms enter sequentially and the difference between the arrival
time of two consecutive firms is τentry ∼ exp(µ). We assume that the type and entry time of a
firm are independent random variables. Upon entry, a firm chooses whether to pursue project
A or project B. In our application, project A is the vaccine and project B is a non-vaccine
drug therapy.

The cost of pursuing project j for a firm of type θ is cj(θ), which is a privately-observed
random variable. As in Section 2, this is a one-time cost paid by the firm at the time of
entering the competition.20 We assume that no more than N̄ firms can enter per project.21

19In the context of our model, the increase in the entry rate after March 11 can be explained by a change
in expected payoffs relative to costs of inventing a drug. See also footnote 15.

20Alternatively, we could have put the heterogeneity in the probability of success. For empirical tractability
we choose to capture all firm heterogeneity in their project-specific entry costs.

21In the Covid-19 estimation, we assume N̄ = 300 per project, which combined equals 1.5 times the 99th
percentile in the distribution of number of drug projects per disease. That is, we assume that up to 600 firms
can enter the innovation race.
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Once the first invention occurs, we assume no further entry occurs, and in our most general
model we allow that each firm earns a continuation value which depends on which project they
pursued. This implicitly allows the model to capture settings where subsequent inventions
of any type are valuable, and where follow-on inventions of the type which was not invented
first retain some value. However, in our baseline model, we assume that the innovation race
ends when either one of the two initial projects is invented.

When a firm enters, the relevant state variables are the number of firms pursuing each project,
(nA, nB). Calendar time is irrelevant since invention probabilities for each firm have Poisson
arrival rates. Firms are forward-looking and they form beliefs about the evolution of future
competition at the time of choosing what project they will work on. Note that a firm can
work on only one project and this choice is irreversible. The expected value of pursuing
project j conditional on the state variables (nA, nB) is given by

V j
nA,nB

=
λjπj + µ

(
Eθ[Pr(A|θ, nA, nB)]V j

nA+1,nB
+ Eθ[Pr(B|θ, nA, nB)]V j

nA,nB+1

)
r + nAλA + nBλB + µ

. (4)

In Equation 4, a firm working on project j wins the race with flow probability λj, in which
case it receives a payoff of πj.22 For notational ease, the equation omits the continuation
values after the first innovation has been invented. With flow probability µ a new firm enters
the race before a discovery has been made. This new firm, depending on its type and resulting
project-specific entry costs, will choose between A or B. If the new firm chooses j ∈ {A,B},
the game will transition to the state (nj + 1, n−j).

An entrant of type θ facing state variables (nA, nB) chooses project A when

V A
nA+1,nB

− cA(θ) > V B
nA,nB+1 − cB(θ). (5)

The type-specific cumulative distribution function of the cost differences cA(θ)− cB(θ) is Fθ,
which depends on a shape parameter, σ(θ). Thus, the entrant chooses to pursue project A
with probability Pr(A|θ, nA, nB) = Fθ(V A

nA+1,nB
− V B

nA,nB+1).

Because we limit the total number of firms that can pursue each project, and firms enter
at rate µ, for T large enough, almost certainly all the firms have entered provided that no
project has been invented. We can analytically compute the payoff of a firm working on

22In our setting, a firm’s chance of success is independent of the time the firm has been in the race,
conditional on no success. Doraszelski (2003), for instance, study the impact of learning and investment on
R&D races. We do not have data on investments, so we do not model this dimension.
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project j at this time T , and use these payoffs to solve the game by backward induction.23

We find the unique equilibrium of the game using this recursive procedure.

3.3 Calibration and Estimation

Let us now clarify why certain parameters have their values imposed and why others can be
estimated based on variation in the panel data of pharmaceutical entry.

Parameters. In our application, we assume two projects: a vaccine project (A) and a non-
vaccine project (B). We also assume an unexpected exogenous payoff shifter with a date that
is known to the researcher. As discussed in Section 2, the exogenous payoff shifter leads to
more entry in equilibrium. We will permit the arrival rate of both types of firms to vary as
a function of the severity shock.

As a result, we have the following set of parameters (summarized in Table 3): the project
difficulties λA and λB, the discount rate r, the fixed cost variance parameters σ(θ) for every
θ ∈ Θ, the payoffs πA and πB, the continuation values following the first invention for each
firm working on a given project π2,A and π2,B, the arrival rates of all firms in both periods
µt1 and µt2 , and the fraction of firms of type θ in each time period κθ,t1 and κθ,t2 .24

In our application, there are two types of firms: experienced and non-experienced, so Θ =
{Experienced, Non-experienced}. We define experienced firms as those who have had a
vaccine project and a drug project for an infectious disease in their research pipelines prior
to Covid-19. With two types, we simply denote by κt the fraction of firms of experienced
firms in time period t.

Normalizations. We first normalize scale by setting πB = 1. Hence, the payoff πA and the
cost parameters will be normalized relative to the value of the short-term invention. In our
baseline model, we set the continuation values π2,A and π2,B to zero. We also estimate an
alternative specification where these values are a function of πA and πB (e.g., when the second
invention in a given class is worth half the value of the first invention). In that specification,
the discount rate, the arrival rates, and the estimated value πA fully determine π2,A and π2,B.

Arrival rates. Without observing the payoff of realized inventions, it is impossible to
23When no further entrants can enter the innovation race, the payoff of pursuing project j is given by

V j

N̄,N̄
= λjπj/(r + N̄(λA + λB)).

24More generally, the model can be extended to K innovations. Identification of the primitives requires
every innovation to be chosen by at least one firm. All other identification arguments remain the same.
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Description Parameter Method
Project difficulty λA, λB calibrated
Project payoffs πA, πB estimated
Continuation Values π2,A and π2,B calibrated
Arrival rates µt1 and µt2 estimated
Fraction of experienced firms in time t κt estimated
Discount rate r calibrated
Cost variance σ(θ) for every θ ∈ Θ estimated

Table 3: Model parameters

separately identify λj and πj. Intuitively, firms may enter slowly because the inventions’
payoffs are low, or because it will take a long time to invent, and hence the payoffs will be
heavily discounted. Observing the ex-post time until invention is only possible for those that
are invented. Even there, we do not want to conflate an invention that was found quickly by
good luck with the inventor’s ex-ante belief that it would be easy to invent. At the beginning
of an innovation race, historical data is all the information firms have to form their beliefs
about the λj of each project. Therefore, we choose λA and λB to match historical normal
rates of development of an invention of a given type being developed by a single firm.

We set the values of the arrival rates to the estimated historical approval times for infectious
diseases, λA = 5.55 × 10−5 (vaccine project), λB = 7.607 × 10−5 (non-vaccine project),
reflecting that vaccines have historically taken longer to develop (Lurie et al., 2020).25

We set the annual discount rate to be 10 percent, equivalent to a daily discount rate r =
2.61× 10−4.

Estimated Parameters. To capture the structural break in the entry rate of new firms, we
assume that there is an exogenous (and unanticipated) change in the rate of arrival of new
firms after March 11. Implicitly, this can be thought of as resulting from an unexpected shock
to payoffs of all Covid-19 related inventions. Similarly, we allow for an exogenous change
in the composition of potential entrants to reflect that fewer experienced firms entered after
March 11.26 Also, we assume that the cumulative distribution function of the difference in
project-specific entry costs cA(θ) − cB(θ) is given by Fθ(t) = ((t + 1)/2)σ(θ) with σ(θ) > 0

25Specifically, to compute λA and λB , we multiply the approval rate of drugs for infectious diseases (11.4
percent in our sample) by one over the average drug approval times of vaccines and non-vaccine drug therapies
for infectious diseases. Given the empirical rate of entry into Covid-19 research, these arrival rates imply a
95 percent chance of a successful therapeutic and vaccine after 250 and 700 days of research, respectively.
Empirically, the first Covid vaccine which reported Stage 3 results in preparation for regulatory filing was
Pfizer/BioNTech on November 9, 2020, 343 days after the pandemic began.

26That is, we do not model why different types of firms enter, but instead model their project choice
conditional on entering.
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and t ∈ [−1, 1] (i.e., cost differences cannot be greater than πB in absolute value), and we
estimate the parameters σ(θ) for each type.27

In the estimation sample, a data point includes the following variables: vaccinej (indicator
for choosing project A), time to next entryj, experiencedj (indicator for whether the firm has
experience both in vaccine production and infectious diseases), Post March 11j (indicator for
whether the firm’s entry time occurred after March 11), and (nA,j, nB,j) (cumulative number
of entrants into projects A and B, respectively, up to that moment of time). To construct the
likelihood function, we make use of Equation 5 to determine the probability that a firm of type
θ facing state variables (nA, nB, ∅) chooses project A as well as the parametric assumptions on
the distribution of entry times (exponential distribution) and distribution of types (discrete
distribution). The explicit formula for the likelihood function is in Appendix C.

We leverage revealed preference to identify the payoff of project A, πA, which in our empirical
application is the slow-to-invent vaccine project. Although the “racing” incentive pushes firms
to choose project B (the easy project), we observe firms choosing project A despite facing
significant levels of competition. The one parameter in the model that can rationalize these
choices is πA. The identification of the parameters of the cost distribution of each type of
firm is possible given the assumption that the value differential of choosing project A instead
of B (i.e., V A

nA+1,nB
− V B

nA,nB+1) does not depend on firm type. Hence, the rate at which each
type of firm chooses project A, given value differentials, identifies the parameters of the cost
distributions. Lastly, the identification of the parameters of the distribution of entry times
or types of firms is straightforward, as these variables are readily observed in the data.

Critical Assumptions. A number of modeling assumptions play a fundamental role in al-
lowing us to back out welfare-relevant parameters from observed firm behavior. In particular,
in our baseline results, we require that 1) heterogeneity is limited to project-specific costs, 2)
payoffs by invention are scaled proportionally, 3) all inventors are for-profit, 4) entry oppor-
tunities arrive stochastically, 5) the value of the alternative invention falls to zero once its
partial substitute is invented, and 6) the difficulty of vaccine and therapeutic Covid projects
is ex-ante expected to be similar to historical drug discovery of each class. Of course, each of
these abstractions is counterfactual, and hence the empirical estimates must be interpreted
with caution. We perform robustness checks relaxing these assumptions.

27The expected cost difference of a firm of type θ is given by (σ(θ)−1)/(1+σ(θ)). This distribution bounds
the cost differences to be between -1 and 1.
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4 Results

4.1 Parameter Estimates and Fit

Table 4 gives parameters from the structural model. The estimated ex-ante expected value
of a vaccine is 40.6 times the value of a non-vaccine therapy. Before March 11, the rate of
entry is estimated to be 0.6 (or one firm entering on average every 1.8 days), whereas after
that date, the entry rate jumped to 3.4 (or one firm entering on average every 0.3 days).
Before March 11, 44.6 percent of firms were experienced, whereas the share of experienced
firms dropped to 18.8 percent afterwards. The expected cost difference between the vaccine
and non-vaccine projects is 0.57 and 0 (i.e., the expected cost difference of type θ is given by
(σθ − 1)/(1 + σθ)), respectively, for non-experienced and experienced firms.28

To gauge model fit, Figure 2 plots the raw data versus the number of vaccine and non-vaccine
projects over time predicted by the model. The figure shows the average number of vaccine
and non-vaccines, over 25,000 simulations of the model using the estimated parameters,
matches closely the number of firms in each project at every moment in time. The first two
rows of Table 5 also show that the model accurately predicts the share of firms of each type
that are working on vaccines and drug therapies.

4.2 Counterfactual Simulations

Planner’s Solution. We measure the extent of directional efficiency by solving for the
socially efficient allocation of firms across projects. Here, the social planner controls the
allocation of each entrant to either vaccines or non-vaccines, but not the rate of entry of
firms. In our baseline case, when computing the planner’s solution we assume that the
social surplus of invention j is a multiplicative increase above the firm’s expected profit. In
particular, we use the rough estimate in Kremer (1998) that, if willingness to pay for medical
treatments is proportional to income, the social surplus is 2.7x the fixed-price revenue of a
monopolist inventor.29 Again, we run 25,000 simulations of the social planner’s problem and

28Amotivation for estimating these parameters using revealed preference is that there are no highly-credible
estimates of, for instance, the expected value of a Covid-19 therapeutic. Even when there are specifics -
Gouglas et al. (2018) use confidential industry data to estimate that vaccine development between preclinical
and Phase 2 trials costs an average of $31 to $68 million - mapping those estimates into our firm-specific
cost estimates is not at all obvious. In Online Appendix E, we show the ex-post value of positive news about
vaccine trials for each of the three Western vaccines whose Stage 3 trial finished in 2020.

29This estimate comes from assuming that willingness to pay for medical treatment is proportional to
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Table 4: MLE estimates of the parameters of the model

Parameter Estimate St. Error
πA 40.636 15.345
πB (normalized) 1 -
µBefore March 11 0.550 0.074
µAfter March 11 3.382 0.198
σNon-experienced 3.648 0.415
σExperienced 1.007 0.209
κBefore March 11 0.446 0.066
κAfter March 11 0.188 0.023
N 347∑
j lj(δ̂)/N -0.516

Notes: Standard errors computed based on the asymptotic distribution of the MLE estimator. Calibrated
parameters: λA = 5.55× 10−5, λB = 7.607× 10−5, and r = 2.61× 10−4 (time is measured in days).

compute the outcomes for each simulation.

Role of Appropriability and Beliefs. We compute the equilibrium allocation of firms
in counterfactual scenarios. We first assume that firms earn the full social surplus of their
inventions. Second, we assume both that the full social surplus is earned and that firms all
believe future R&D competition will be stronger or weaker than what was actually observed.
In particular, in the “low competition” scenario, we recompute the equilibrium under the
assumption that firms believe rival entry in the future would have remained at pre-March
11 levels throughout the game, while keeping actual entry fixed and still allowing for the
composition of firms to change after March 11. In this counterfactual scenario, firms are
making their choices with the same state variables as in the observed equilibrium, and the
same cost structure; only their belief about future competition is altered. This results in firms
facing less competitive pressure when making their project choices. Alternatively, in the “high
competition” scenario, it is the pre-March 11 entrants who believe that they will face future
entry at the rapid rate that occurred in the observed data only after the March shock to
pandemic severity. By comparing the observed equilibria with counterfactual equilibria, we
are able to quantify how these factors affect directional distortion.

Table 5 compares the simulation-average planner solution to the expected outcomes in equi-
librium. In the baseline case, in line with observed data (A.1), the equilibrium allocation
involves 80.8 firms working on a vaccine project (A.2). However, 140.5 firms would be as-

income. Using U.S. income distribution data, the gap between the total surplus of a medical invention and
the profit earned by a fixed-price monopolist is 2.7.
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Figure 2: Number of vaccine and non-vaccine drug therapies predicted by the model and in the
data
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signed by the planner to do so (B.2). The planner assigns many firms to work on a vaccine
even though many are inexperienced and are estimated to have much higher costs to working
on a vaccine rather than a therapeutic. Comparing A.2 and B.2, the gap between the planner
optimum and the market equilibrium is largely driven by the fact that firms bear the full
cost of drug development but only earn a fraction of the social surplus of their invention.

A natural remedy, therefore, is to ensure firms earn the full ex-ante social surplus of their
inventions. Table 5 C.1 shows that, under that payoff assumption, 134.3 firms would work
on vaccines in equilibrium. 10.4 percent of the firms who deviated from the social planner
optimum, or 6.2 firms overall, remain deviating even when payoffs are scaled up to match
social surplus. This remaining difference is due to the strategic incentive to deviate away
from more difficult projects.30 Examining the right-most columns, the gap between the
planner optimum and equilibrium project choice when payoffs are scaled up is driven by
both experienced and non-experienced firms.

Table 5 C.2 and C.3 show the importance of beliefs about competition. C.2 shows that had
firms always believed competition would remain limited to its pre-March 11 level, many more
late entrants would have worked on vaccines: indeed, there would be over-entry, especially
from less experienced firms. C.3 considers the counterfactual where all firms believe that the

30Note that we argued in Section 3 that a scaling of the payoff parameters did not affect directional choices
directly. This was driven by the assumption that entry costs are the same for both projects. In the empirical
model, however, we allow for cost heterogeneity across projects, which implies that if we scale payoffs keeping
costs fixed, directional choices are affected directly.
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Table 5: Planner’s solution versus equilibrium allocation of firms

Number of firms working on: Share of firms working on vaccines (A):
Vaccine (A) Non-vaccine (B) Experts Non-experts Overall

A. Data and model predictions
1. Data 81 266 0.588 0.127 0.233
2. Market equilibrium (model predictions) 80.812 266.188 0.587 0.127 0.233

B. Planner’s solution
1. Social payoffj = πj 81.473 265.527 0.592 0.128 0.235
2. Social payoffj = 2.7πj (baseline case) 140.449 206.551 0.756 0.299 0.405

C. Counterfactual Market Equilibria
Private payoffj = 2.7πj. Entry belief:
1. Match the data 134.347 212.653 0.744 0.280 0.387
2. Fixed at pre-March 11 levels 166.156 180.844 0.797 0.383 0.479
3. Fixed at post-March 11 levels 107.885 239.115 0.661 0.206 0.311

Notes: Outcomes are measured at 188 days since December 1, 2019. Outcomes for the equilibrium allocation
and planner’s solution are computed averaging outcomes across 25,000 model simulations. Counterfactual C.1
considers the case when the inventor of project j earns 2.7x the estimated payoff of project j. Counterfactual
C.2 considers the case where all firms entering after March 11 believe that future entry will be at the pre-
March 11 rate, and that the inventor of project j earns 2.7x the estimated payoff of project j. Counterfactual
C.3 considers the case where all firms entering before March 11 believe that future entry will be at the
post-March 11 rate, and that the inventor of project j earns 2.7x the estimated payoff of project j.

entry rate of R&D competition is as high as it was post-March 11, when we estimate around
3 firms enter the race each day. Here, only 107.9 firms work on vaccines, 33 fewer than the
social optimum. The March 11 demand shock occurred after many experienced firms had
already begun working on Covid R&D, under the expectation of more limited competition.
It was therefore fortunate that the most experienced vaccine inventors had largely entered
before March 11, as our estimates suggest many of these firms would have deviated to working
on therapeutics had they known how much competition they would face.

Government Interventions. We use the model estimates to quantify the impact of two
sets of policy interventions. First, we ask what directed subsidy for vaccine entrants would
induce the optimal balance of vaccines and non-vaccines given estimated firm capabilities?31

Second, we consider advanced market commitments (AMCs) which pay successful inventors
the full ex-post social surplus of their inventions, or which only pay vaccine inventors that
surplus while non-vaccine inventors earn only the fixed-price monopoly surplus.

Panel B of Table 6 shows that an entry cost subsidy of 0.3 percent of the value of the non-
vaccine project (πB = 1) would induce optimal direction choice if the firms are capturing

31Recall that firm heterogeneity is modeled by differing entry costs for vaccines for experienced firms,
estimated via revealed preference. Note also that in these counterfactuals, we do not allow the number of
firms who enter to vary (µ is an estimated parameter held constant in the counterfactual). The counterfactuals
should therefore be interpreted as estimates for fixing directional distortion conditional on entry.
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the full social surplus of their inventions. Panel C shows that if the social value of Covid-19
inventions is 2.7x their private value, and hence the directional distortion is large, to achieve
efficiency we need a vaccine-specific entry cost subsidy equal to 30.3 percent of πB. Panel D
shows that an AMC paying the first inventor of any Covid-19 invention a subsidy equal to
the social surplus of their invention leads to 5 percent too few firms working on vaccines.32

Note why the AMC does not fully resolve directional distortions. Scaling up πj, for all j, shifts
some firms with high cost draws for the vaccine and low cost draws for the therapeutic to the
vaccine. However, the racing externality remains: in Section 2, the derivation of directional
distortions held even when firms were paid the full social surplus of their invention. Paying the
AMC only if a vaccine is invented first helps, but still leaves 3 percent too few firms choosing
to work on vaccines. To achieve efficiency with an AMC, the AMC would need to pay 2.85
times the private value of the vaccine and be paid only if a vaccine is invented first. However,
achieving efficiency with an AMC is much more expensive than with directed cost subsidies
($115.81πB versus $42.56πB). Effectively, the underprovision of vaccines is being driven by
the rational expectation that some other firm will finish a moderately useful therapeutic
quickly, hence large directed entry subsidies which prevent other firms from deviating are a
cheaper method of preventing directional distortion.

4.3 Other Results and Robustness

Does the racing externality help the model explain the data? To answer this question, we
compare our baseline model estimates with those of a different model, where we shut down
strategic effects by assuming myopic firms. In that model, firms enter assuming they are the
first entrant and that no more firms will enter in the future. The model is equally flexible to
our baseline model in all other respects. Online Appendix Figure B.3 presents the estimates
of this alternative model. Comparing the estimates of both models, we find that shutting
down the racing externality worsens the model fit: the mean squared error of the model
with myopic firms is 2.6 times higher than our baseline model. The difference between the
baseline and the nonstrategic models is especially salient for early entry. As the number of
firms that have entered grows large, and no invention has yet arrived, the expected payoff for
any invention becomes small due to the high level of competition. Therefore, cost differentials
begin to drive project choice, and hence nonstrategic models will fit well. However, when few
firms have entered, an expectation that the next few firms will work on a quick therapeutic

32In an early book on the economics of Covid-19, Gans (2020) discusses in more depth the use of AMCs
and the problem of commitment in previous epidemics.
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Table 6: Planner’s solution versus market equilibrium under alternative policy regimes

Number of firms working on:
Vaccine (A) Non-vaccine (B)

A. Data and model predictions
Data 81 266
Market equilibrium (model predictions) 80.812 266.188

B. Setting the social payoff of project j to πj
Market equilibrium w/ directed cost subsidy of 0.003 · πB 81.716 265.284
Planner’s solution 81.473 265.527

C. Setting the social payoff of project j to 2.7 · πj
Market equilibrium w/ directed cost subsidy of 0.303 · πB 140.521 206.479
Planner’s solution 140.449 206.551

D. Market equilibrium using AMCs of size s
s = 2.7 · πj for both projects 134.347 212.653
s = 2.7 · πj for the vaccine project only 136.113 210.887
s = 2.85 · πj for the vaccine project only 140.068 206.932

Notes: Outcomes are measured at 188 days since December 1, 2019. Outcomes for the market equilibrium
and planner’s solution are computed based on the average outcomes across 25,000 simulations of the game.
Market equilibrium w/ directed cost subsidy indicates the case where project A receives a cost subsidy
equivalent to the amount indicated in the table. Market equilibrium w/ AMC of 2.7 · πj indicates the case
when the firm inventing project j receives a payoff of 2.7 · πj instead of just πj .

will substantially affect the expected value of working on a vaccine. Thus, project-specific
cost differentials align the planner and the firm choice when there are many firms, mitigating
the directional distortion caused by the racing externality.

Although our main estimates concern vaccines versus non-vaccines, in Online Appendix Ta-
ble B.2, we replicate our analysis redefining the two possible projects to be a novel drug
(project A) and a repurposed drug (project B). As in Section 2, a repurposed drug is defined
as one that has more than one indication and which existed prior to the Covid-19 pandemic.
A novel drug is one that is not repurposed. Based on historical data on drug approval times,
we set the values of λA and λB to 6.825 × 10−5 and 9.859 × 10−5, respectively. The value
of r and the definition of experienced firms are the same as those used for the vaccine/non-
vaccine drug analysis with which we lead this section. We estimate that successful novel
drugs are worth 17.9 times as much as repurposed ones in expectation. In our baseline case,
the planner would have increased the number of firms working on novel drugs by 16.6%,
shifting 28 firms toward that higher-value research. In the counterfactual where firms earn
the full social surplus of their invention as profit, 18 more firms work on a novel compound;
34 percent of the gap between the planner optimum and market equilibrium remains due to
strategic racing.
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For robustness, we replicate our main analysis assuming that the value of Covid-related
inventions does not fall to zero after the first invention is found. In particular, we assume
that no further entry occurs after that point, that firms can continue to work on the research
line they initially entered, and that one additional invention with value δπj can be invented.33

That is, if δ = .5, we assume that following the invention of a vaccine or a therapeutic, one
additional invention still has positive value equal to half its ex-ante value. If a vaccine is
invented first, this second invention can either be a second vaccine, or a first therapeutic.
Likewise, if a therapeutic is invented first, this second invention can either be a second
therapeutic or a first vaccine. Online Appendix Table B.3 shows that permitting multiple
inventions gives estimates of the effect of directional distortion that are quantitatively similar
to our main results. Note that this setting is identical to one where an infinite number of
inventions of either type have value, with the value of each consecutive invention being worth
a fraction δr

r+nAλA+nBλB
of the prior one.

Lastly, we replicate our main analysis assuming that the rates at which projects A and B are
invented are 50 percent faster than what the historical data suggest. This exercise allows us
to gauge robustness to the scenario in which firms had beliefs that approval times would be
faster than normal. Online Appendix Table B.4 shows that our empirical results are similar
to our baseline results in this case, with slightly more strategic racing toward therapeutics.

5 Conclusion

Theoretically, we show that when endogenous market structure is accounted for, shocks to the
profitability of innovation in a sector change the direction of research and not only its rate.
Higher payoffs cause more firms to pursue R&D. Firms do not fully account for how their
invention today affects the surplus generated by partial substitutes invented later. The more
fractured the market for research, the more each firm overweights short-run profits earned by
racing to enter the market first with a mediocre solution. Therefore, when an innovation area
becomes more lucrative or easier to enter, strategic interaction in competitive R&D markets
leads to too much work on “quick” projects like repurposed drugs and too little work on
projects like vaccines.

Empirically, we quantify the size of this directional distortion using a structural model of
Covid-19 pharmaceutical innovation that separates strategic racing from other factors that
drive project choice, such as cost heterogeneity. Although the rate of Covid-19 research

33We also assume that the firm that made the first invention exits the race.
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proceeded at an unprecedented historical pace, it initially involved a smaller share of research
on vaccines than previous epidemics. Our empirical estimates suggest that the planner would
have pushed many more firms to work on vaccines and novel compounds. The primary reason
firms worked on less lucrative projects was that they only captured a fraction of the social
surplus of their invention. Differences in the cost of R&D on different projects therefore drove
decisions. Nonetheless, even if inventors had earned the full social surplus of their inventions,
an additional 7 percent would have worked on vaccines had they believed they would face
less competition from other researchers. This implies that “neutral policies” such as advance
market commitments are unable to fully restore efficiency. Technologically neutral policy in
the face of strategic behavior is not in fact neutral.
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A Data Sources and Data Construction

We use proprietary data from “BioMedTracker,” which is an Informa PLC product and tracks
pharmaceutical pipelines over time. We also retrieved lists of medical research articles by
disease from PubMed to study the evolution of academic publications around the time of an
epidemic/pandemic.

We use BioMedTracker (last accessed June 15, 2020) to obtain the full list of Covid-19 drug
therapies in development as well as the development history (i.e., the start dates of develop-
ment and clinical trials if applicable) and the list of companies involved in the development of
each drug therapy. Similarly, we use BioMedTracker to obtain the same information for the
H1N1 pandemic (2009), the Ebola epidemic (2013-2016), and the Zika epidemic (2015-2016).
We also use BioMedTracker to obtain the pipelines (i.e., the list of all drugs that are currently
in development or have been in development in the past) of all pharmaceutical companies.

With few exceptions, the variables we use in the analysis are variables that are available in
the raw BioMedTracker data. We define the variable ‘Repurposed,’ as any drug for disease x
that existed prior to the beginning of the epidemic of disease x (e.g., a repurposed Covid-19
drug is one that has multiple indications and existed prior to December 1, 2019). We also
define variables related to the drug-development experience of firms (i.e., “experience w/
vaccines”, “experience w/ antivirals”, and “experience w/ infectious diseases”), which are
based on the research pipeline of each firm.

There are, of course, many other datasets on Covid-19 projects. Hand-checking these data
reveal that they generally overlap heavily with the BioMedTracker data. For instance, the
Milken Institute Covid tracker based on public media reports as of April 20, 2020, finds 146
drug treatments and 92 candidate vaccines, of which 49 are not modified existing platforms.34

As of April 20, 2020, BioMedTracker finds 170 drug treatments and 51 candidate vaccines.
For reasons of comeasurability with the Ebola, Zika, and H1N1 data, we use only the remedies
in the BioMedTracker dataset.

34See https://milkeninstitute.org/covid-19-tracker.

ii

https://milkeninstitute.org/covid-19-tracker


B Additional Tables and Figures

Table B.1: Project choice among Covid-19 entrants (experienced firms subsample)

Before March 11 After March 11 Total
Non-vaccine 6 27 33
Vaccine 19 28 47
Total 25 55 80

Notes: An observation is a drug project, and the outcome variable can take one of two values: vaccine or
non-vaccine drug project. Experienced firms are the firms that have had a vaccine project and a drug project
for an infectious disease prior to Covid-19 in their research pipelines. ‘Before/After March 11’ are indicators
that take the value 1 if the firm’s entry date is after March 11, 2020.

Figure B.1: Number of Covid-19 drug therapies in research pipelines, by drug classification
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Notes: The figure plots the number of Covid-19 drug therapies (at all stages of development) in research
pipelines, by type of drug. The figure separates the drug therapies between repurposed and non-repurposed
drugs. Repurposed drugs are defined as drug therapies that existed prior to December 1, 2019 (i.e., beginning
of the Covid-19 pandemic) and have more than one indication (e.g., Covid-19 and Ebola).
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Table B.2: Planner’s solution versus market equilibrium: Repurposed vs. non-repurposed drugs

Number of firms working on: Share of firms working on non-repurposed (A):
Non-repurposed (A) Repurposed (B) Experts Non-experts Overall

A. Data and model predictions
1. Data 169 178 0.788 0.399 0.487
2. Market equilibrium (model predictions) 169.463 177.537 0.788 0.398 0.488

B. Planner’s solution
1. Planner’s solution (social payoffj = πj) 171.886 175.114 0.793 0.405 0.495
2. Planner’s solution (social payoffj = 2.7πj) 197.520 149.480 0.845 0.485 0.569

C. Counterfactual market equilibria
Private payoffj = 2.7πj. Entry belief:
1. Match the data 187.960 159.040 0.825 0.456 0.542

Notes: The estimates of the parameters of the model are π̂A = 17.854, σNon-experienced = 1.443, σExperienced =
0.389, and the parameter estimates of the entry rate of firms and the distribution of firm types are identical
to those in Table 4. The values of λA, λB , and r are set at 0.00006825, 0.00009859, and 1.11/365 − 1,
respectively. As in Table 4, the values of λj are calibrated based on historical data on drug approval times.
The definition of experienced firms are identical to those used in the vaccine/non-vaccine drug analysis in
Table 4. Outcomes are measured at 188 days since December 1, 2019. Outcomes for the market equilibrium
and planner’s solution are computed based on the average outcomes across 25,000 simulations of the game.

Figure B.2: Funding by project type
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Table B.3: Planner’s solution versus market equilibrium when allowing for two consecutive races

Panel 1: δ = 0.1
Number of firms working on: Share of firms working on vaccines (A):

Vaccines (A) Non-vaccines (B) Experts Non-experts Overall
A. Data and model predictions
1. Data 81 266 0.588 0.127 0.233
2. Market equilibrium (model predictions) 80.816 266.184 0.587 0.127 0.233

B. Planner’s solution
1. Planner’s solution (social payoffj = πj) 81.476 265.524 0.592 0.128 0.235
2. Planner’s solution (social payoffj = 2.7πj) 139.565 207.435 0.752 0.297 0.402

C. Counterfactual market equilibria
Private payoffj = 2.7πj. Entry belief:
1. Match the data 134.582 212.418 0.744 0.281 0.388

Panel 2: δ = 0.5
Number of firms working on: Share of firms working on vaccines (A):

Vaccines (A) Non-vaccines (B) Experts Non-experts Overall
A. Data and model predictions
1. Data 81 266 0.588 0.127 0.233
2. Market equilibrium (model predictions) 80.815 266.185 0.587 0.127 0.233

B. Planner’s solution
1. Planner’s solution (social payoffj = πj) 81.510 265.490 0.592 0.128 0.235
2. Planner’s solution (social payoffj = 2.7πj) 135.229 211.771 0.746 0.283 0.390

C. Counterfactual market equilibria
Private payoffj = 2.7πj. Entry belief:
1. Match the data 127.455 219.545 0.710 0.264 0.367

Notes: The estimates of the parameters of the model in Panel A are π̂A = 37.302, σNon-experienced = 3.651, and
σExperienced = 1.008; the in Panel B are π̂A = 28.199, σNon-experienced = 3.659, and σExperienced = 1.010. The
parameter estimates of the entry rate of firms, the distribution of firm types, and the calibrated parameters
are identical to those in Table 4. Outcomes are measured at 188 days since December 1, 2019. Outcomes for
the market equilibrium and planner’s solution are computed based on the average outcomes across 25,000
simulations of the game.
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Table B.4: Planner’s solution versus market equilibrium when λj ’s are 50% faster

Number of firms working on: Share of firms working on vaccines (A):
Vaccines (A) Non-vaccines (B) Experts Non-experts Overall

A. Data and model predictions
1. Data 81 266 0.588 0.127 0.233
2. Market equilibrium (model predictions) 80.814 266.186 0.587 0.127 0.233

B. Planner’s solution
1. Planner’s solution (social payoffj = πj) 82.611 264.389 0.596 0.131 0.238
2. Planner’s solution (social payoffj = 2.7πj) 138.977 208.023 0.752 0.295 0.401

C. Counterfactual market equilibria
Private payoffj = 2.7πj. Entry belief:
1. Match the data 130.162 216.838 0.734 0.267 0.375

Notes: The estimates of the parameters of the model are π̂A = 33.316, σNon-experienced = 3.591, σExperienced =
0.989, and the parameter estimates of the entry rate of firms and the distribution of firm types are identical
to those in Table 4. Outcomes are measured at 188 days since December 1, 2019. Outcomes for the market
equilibrium and planner’s solution are computed based on the average outcomes across 25,000 simulations of
the game.

Figure B.3: Number of vaccine and non-vaccine drug therapies predicted by the model and in the
data
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Notes: Outcomes for the market equilibrium are computed based on the average outcomes across 25,000
simulations of the game. The strategic model in panel A corresponds to the model presented in Section 4.
The myopic model in panel B corresponds to a version of the model in Section 4 in which each firm behaves
as if it is the only firm that has entered and will ever enter the race. The figures restrict attention to the
first 100 days of the pandemic.
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C Likelihood Function

The probability that there is no discovery in [0, τ ], the next firm enters at time τ , its type is
θ, and this new entrant works on a vaccine (project A) is given by

e−(λAnA+λBnB)τ · µe−µτ · κ(θ) · Fθ(V A
nA+1,nB

− V B
nA,nB+1).

More generally, the log-likelihood function of a data point is given by

lj(δ) = vaccinej · log(Fθ(V A
nA+1,nB

− V B
nA,nB+1))

+(1− vaccinej) · log(1− Fθ(V A
nA+1,nB

− V B
nA,nB+1))

+After March 11j · (log(µAfter March 11)− µAfter March 11 · time to next entryj)

+(1− After March 11j) · (log(µBefore March 11)− µBefore March 11 · time to next entryj)

+After March 11j · (experiencedj · log(κAfter March 11)

+(1− experiencedj) · log(1− κAfter March 11))

+(1− After March 11j) · (experiencedj · log(κBefore March 11)

+(1− experiencedj) · log(1− κBefore March 11)),

where the value functions implicitly take into account the changes in entry rate and compo-
sition of types after March 11. The MLE estimator of the model parameters is then given
by

δ̂ = arg max
∑
j

lj(δ),

where δ = (πA, µBefore/After March 11, σExperienced/Non-experienced, κBefore/After March 11).
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D Competition and Directional Choice: Anecdotal Ev-
idence from Expert Interviews

To what extent do we observe this racing behavior directly? Firms generally do not make their
rationale for choosing one R&D project over another observable to the analyst. However,
we do see suggestive evidence of our mechanism at play in qualitative data from a four-
month Covid-related entrepreneurship program run in the Spring and Summer of 2020, which
for anonymity reasons we call the Program. In the Program, 65 science-based startups
from around the world participated in monthly, structured online meetings with a panel of
entrepreneurship experts which included serial founders, partners at leading venture capital
firms, and world-renowned scientists and epidemiologists. Many of the founders had deep
technical expertise but little business experience. At each meeting, the panel gave firms advice
on the long-run financial viability of their Covid-related business. We therefore can observe,
qualitatively, the interaction between technical potential and financial viability. Although
these companies are largely not pharmaceutical companies, the tradeoff of being “first” versus
being “best” came up frequently in the online meetings. Consider the following cases.

One firm, headed by senior academics at a top global research university, had developed a
technique for a new type of vaccine which is particularly promising when it comes to coron-
aviruses in particular. In an early summer meeting, the former director of a large government
health body evaluated the firm as a “brilliant company. Currently, lots of competitors in vac-
cine space, but this approach is so far superior.” By August, a half dozen different mentors
told the company the vaccine space was simply too competitive for them to succeed even if
their approach was superior: “This is a very competitive space. Point of differentiation in
relation to competitors is very important. There is a race to the forefront in this crowded
space.” The advice in the final meeting was to either stop working on Covid-19 altogether and
focus on a broader scientific problem, or to license out any aspects of the Covid-19 technology
which can speed up development for a more advanced competitor.

A second firm, also founded by academics at a top global research university, produced a
sensor which could identify pathogens on surfaces or in water. Their technology could detect
contaminated surfaces on-site, without the use of specialized equipment or trained clinicians.
Although the mentors “like the team” and believe “there is good technical knowledge,” even
by June there was widespread agreement that “this is becoming a crowded space, so un-
derstanding the current players/emerging competition is critical.” Even though the firm’s
technology was quicker and more accurate than existing competitors, its cost and time to
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commercial development were too high compared to easier-to-develop technologies such as
strong surface cleaners. The company pivoted away from Covid-19 development. Note that
in both cases, there was general agreement that the proposed invention was the leader on
technical grounds. However, there was so much competition in both markets that modest
partial substitutes which arrived to market first were expected to take much of the profit.
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E Empirical Stock Price Reaction to Vaccine News

The empirical model in this paper uses revealed preference based on the ex-ante profitability
of a novel vaccine or therapeutic. This is necessary since in many cases of directional inven-
tion, some projects are never invented along the equilibrium path. We estimate that a Covid
vaccine is worth, in expectation, 40 times the mean value of a successful Covid therapeutic.
In this appendix, we show the observed share price reaction of the firms who invented the
vaccines whose Phase 3 trials ended in 2020.

Figure B.4

Figure B.4 shows the market cap in USD for Pfizer, BioNTech, Moderna and AstraZeneca
throughout 2020. The blue vertical line represent the date of the announcement of a successful
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Phase 3 trial for Pfizer and BioNTech (November 9), the orange line in the top panel the
successful Phase 3 trial announcement for Moderna (November 30), and the orange line in
the bottom panel the date of the successful Phase 3 trial announcement from AstraZeneca
(December 8). These announcements are of course not clean event studies due to the reporting
of the intermediate trial data, but nonetheless suggest the interrelation between profitability
of various manufacturers, and the rough magnitude of the value of a successful vaccine.

On November 9, Pfizer and BioNTech jointly saw their market capitalization rise 18.8 billion
USD. On the same day, AstraZeneca fell 3.9 billion and Moderna rose 1.5 billion, partially
reflecting the joint positive news of a successful mRNA vaccine and the negative news of a
successful rival. On November 30, Moderna announced full results of its Phase 3 trial with
efficacy similar to Pfizer/BioNTech. It’s market cap went up a further 10.1 billion USD,
while AstraZeneca’s market cap rose 0.8 billion, BioNTech’s rose 3.4 billion, and Pfizer’s
rose 6.0 billion, again reflecting a combination of positive technological news and negative
competition news. Finally, the announcements of AstraZeneca’s interim results with only
moderate efficacy compared to the mRNA vaccines led to a 1.2 billion dollar market cap
improvement for AstraZeneca, but a 4.1 billion dollar jump in Moderna’s market cap, a 0.5
billion dollar increase in BioNTech, and a 7.3 billion dollar increase for Pfizer.

It is difficult to interpret the ex-ante value of the vaccine in and of itself to the profitability
of large, multiproduct firms like Pfizer and AstraZeneca. Nonetheless, for small firms like
Moderna and BioNTech, the year over year increase in market capitalization between January
2020 and the end of that year gives a rough approximation. This value will of course also
include the potential profitability of future products built using mRNA technology, or licenses
thereof. In 2020, the market cap of Moderna rose 36.6 billion dollars, on a base of just over
7 billion dollars. BioNTech saw a rise of 11.5 billion dollars, from a base of roughly 9 billion.
Note, of course, that some of the profitability of BioNTech’s product is shared with Pfizer.

xi



F Analysis of the Model

Optimal Direction (Lemma 1). This proposition follows from Bryan and Lemus (2017),
Proposition 2, part 1 (p. 259). The note after the proposition comes from noting that when
N →∞, NλB

r+NλB
→ 1, so PA → π1,A + π2,B and PB → π1,B + π2,A; and N(λB−λA)

r+λA
→ λB−λA

λA
.

Efficient Entry (Proposition 1).

1. Consider an exogenous payoff shifter η, where η multiplicatively scales all payoffs π. Then,
the optimal number of firms is

max
N∈{0,1,...}

V (N)η − F ·N

Given that V (N) is an increasing function (it is the maximum of two increasing functions),
a direct application of Topkis’ Theorem implies that N∗ is weakly increasing in η.

2. As η → ∞, we have that N∗(η) → ∞. This implies that N∗(η)λB

r+N∗(η)λB
→ 1. Simple algebra

shows that the condition becomes π1,A + π2,B ≥ π1,B + π2,A.

Equilibrium (Lemma 2).

This result is a direct from Bryan and Lemus (2017), Corollary 1 (p.260).

Entry and Direction in Equilibrium (Proposition 2)

Part i: Let η scale multiplicatively all payoffs. Let Πe represent equilibrium profits in a sym-
metric equilibrium. The equilibrium number of firms N e with payoff shifter η is determined
by the condition

Πe(N e) ≥ F

η
> Πe(N e + 1).

Given that Πe(·) is weakly decreasing, the equilibrium number of firms increases with the
size of the payoff shifter.

Part ii: Note that as N e →∞ we have PA → π1,A+π2,B, PB → π1,B +π2,A , ∆(N)→ λB−λA

λA
.

Therefore, for N e large enough we will have

λAPA < λBPB −∆(N)λAPA +N(λBπ1,B − λAπ1,A).

Excessive Entry (Proposition 3)
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The marginal condition that determine the efficient number of firms to enter (ignoring the
integer constraint) is G(N) = F where

G(N) = rλA
(r +NλA)2

(
πA + NλB

r +NλB
VA

)
+ NλA
r +NλA

rλB
(r +NλB)2VA.

Denote the solution to this equation N∗, and note that G(N)N → 0 as N →∞.

Suppose that N firms have entered. In the subsequent game, the firm i splits its capacity
between A and B according to xi,A and xi,B respectively. Rival firms split their capacity in
such a way that there is an aggregate effort towards invention j ∈ {A,B} (including that
of the small firm) is zj. After the first invention is discovered, the N firms will direct their
capacity towards the remaining invention. Ignoring the integer constraint, the zero profit
condition is H(N) = F where

H(N) =
∑

j∈{A,B}

xi,jλA
r + zAλA + zBλB

(
π1,j + Nλ−j

r +Nλ−j
π2,−j

)
= F

Denote the solution to this equation N e. Given that xi,j ≤ 1 and zj ≤ N , we have H(N)N →
Ω as N → ∞, with Ω > 0. This shows that, as N → ∞, there will be a threshold N̄ such
that H(N) > G(N) for all N ≥ N̄ . As the severity of the crises increases and both N∗ and
N e are above N̄ , we will have H(N e) = F = G(N∗) < H(N∗). If we select a type of equilibria
with a particular feature (e.g., equilibrium where all firms work on a particular invention),
then H(·) is decreasing, which implies that N e > N∗.
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G Flow Cost Payoffs

Suppose that instead of receiving a lump-sum payment, the inventors receive a flow payoff
until the next invention is discovered.

Let πi be flow (monopoly) profit when the first invention is i, conditional on nothing else yet
discovered. After the first invention there will be full effort to discover the second invention,
which will arrive according to the distribution F (t) = 1− e−λ−iNt.

Let πMi,−i the payoff to the first inventor after the second invention, when the first invention
is i, the second invention is −i and the same inventor discovered both of them.

Let πDi,−i the payoff of the first inventor discovered i and the second invention, −i, is discovered
by someone else. Note that, because after the first invention, regardless of who invents, there
will be full effort in the second invention, the payoff of the second inventor, conditional on
not inventing the first invention, denoted πE, affects entry but does not impact directional
choices.

At the beginning of the game incentives are symmetric. Therefore, the inventors expect the
following payoff for inventing i first:

∫ ∞
0

{
πie
−Nλ−it + λ−iNe

−Nλ−it

[
1
N
·
πMi,−i
r

+
(
N − 1
N

)
·
πDi,−i
r

]}
e−rtdt

This is the same as

Vf,i = πi
Nλ−i + r

+ Nλ−i
Nλ−i + r

[
1
N
·
πMi,−i
r

+
(
N − 1
N

) πDi,−i
r

]
(6)

Comparing with our baseline setting, where the first inventor receives an lump-sum payoff
π1,i and a continuation payoff Nλ−i

Nλ−i + r
π2,−i, we note two differences:

1. The “immediate payoff” (πi,1) now is πi
Nλ−i + r

which depends on N and λ.

2. The “continuation payoff” (π−i,2) now is 1
N
· π

S
i,−i

r
+
(
N−1
N

)
πE

i,−i

r
and depends on N .

Assuming that starting from A is efficient, instead of (N−1)(λBπ1,B−λAπ1,A), the directional
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distortion now is

∆ = (N − 1)
(

λBπB
λAN + r

− λAπA
λBN + r

)

= (N − 1)
(λ2N + r)(λ1N + r) [N(λ2

2π2 − λ2
1π1) + r(π2 − π1)]

As a function of N the directional distortion increases, but it is bounded: As N → ∞, the
directional distortion converges to

∆∞ = λ2
2π2 − λ2

1π1

λ1λ2
.

In the limit as N → ∞, the planner starts from A whenever πDA,B > πDB,A. Thus, starting
from A is not an equilibrium when N is large whenever πDA,B < πDB,A + ∆∞. In particular,
if λ2

2π2 is larger than λ2
1π1, i.e., the incentive to race towards the direction with the largest

flow payoff.

Connection with lump-sum payoffs. In the main text, we assumed lump-sum payoffs.
This is, in fact, a particular case of flow payoffs under restrictions on the relationship between
different flow payoffs. Let π1,i = πi

r
and let π2,i = πM

i,i−πi

r
. Then, Equation 6 can be written as

π1,i + λ−i
Nλ−i + 1π2,i + (N − 1)λ−i

Nλ−i + 1 (πi,−i − πi)︸ ︷︷ ︸
cannibalization

The expression above is exactly the same payoff that a firm gets in the baseline model
except for the last term (cannibalization). Cannibalization represents how much lower the
original inventor’s own payoff is if someone else invents the second invention, πi,−i − πi.
Cannibalization does not affect social surplus, hence the planner payoff is unchanged by
assumptions about its extent. Thus, our baseline model is equivalent to one where there are
flow payoffs, but there is no own-cannibalization when the two inventions are discovered first
by the same inventor.
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