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Abstract

Price announcements—similar to the ones made by tech firms at media

events—are effective in deterring innovation. By announcing (and setting)

a high price, a firm increases its rivals’ short-run profits, reducing the rival

firms’ incentives to innovate by magnifying their Arrow’s replacement effect.

We show that the equilibrium prices are greater and R&D investments lower

relative to when price announcements cannot be used strategically. We call

this the R&D deterrence effect of price and show that it induces equilibrium

prices that may exceed the multiproduct monopoly prices and even dissipate

the consumer benefits of innovation.
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1 Introduction

For many years now, Apple has unveiled and announced prices for its new products

at media events. For example, Tim Cook unveiled the iPhone 11 Pro Max and

announced its $1,099 price on September 10, 2019, at Apple’s keynote event. A

number of other recent examples suggest that price announcements at media events

have become common practice in innovative industries (e.g., Microsoft unveiling its

Surface Pro or Samsung launching the Galaxy S10 phone).1 Price announcements

are meaningful in that firms often choose not to revise these prices until they

introduce a new generation of products (e.g., see the price history of the iPhone

in Figure 1).

Price announcements have an impact on rival firms’ incentives to innovate. To

see this, consider a firm’s unveiling of a new product and its price-announcement

decision. On the one hand, announcing a high price reduces the amount of business

that the new product will steal from substitute products sold by rival firms. If the

profits of rival firms remain high despite the new product, rival firms will have

less incentive to innovate or upgrade their existing products. On the other hand,

announcing a low price may cause the new product to steal more of the business

from rival products, which would make it more pressing for rival firms to innovate.

Announcing a price that exceeds the static best response therefore has the cost of

lower short-run profits but the benefit of less R&D activity by rival firms. These

effects introduce a new trade-off in the pricing decision.

The mechanism by which price announcements impact the incentives to inno-

vate is known as Arrow’s replacement effect (Arrow, 1962). Arrow’s replacement

effect captures the tension between the profitability of a firm’s existing products

and the firm’s incentives to upgrade those products (or invent new ones). The

replacement effect has often been cited as a factor that kills innovation and even

threatens the existence of firms in innovative industries (Christensen, 1993, 1997,

Igami, 2017).2 In this paper, we go one step further and show that firms can use

1Recent examples include announcements by Apple (see “Apple Unveils Smart Speaker Called
HomePod,” The Wall Street Journal, June 5, 2017), Microsoft (see “Microsoft’s New Surface Pro
Borrows From the Family to Revive Sales,” The Wall Street Journal, May 23, 2017), Nintendo
(see “Nintendo to Launch New 2DS XL Handheld Game Device in July,” The Wall Street Journal,
April 28, 2017), and Samsung (see “Samsung Has a Lot Riding on the Galaxy S8 Launch,” The
Wall Street Journal, March 29, 2017).

2See, for instance, “Nokia’s New Chief Faces Culture of Complacency,” The New York Times,
September 26, 2010, or “Why Innovation and Complacency Don’t Mix,” Associations Now,
September 2, 2014.
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Figure 1: iPhone prices over time, by model

Source: Authors’ calculations based on price announcements at Apple media events and past
information posted on the Apple Store website. The prices are as of September of every year and
correspond to the price of the cheapest version of each model when purchasing it unlocked (i.e.,
carrier free).

price announcements to affect the replacement effect of rivals and, consequently,

their incentives to innovate—i.e., the R&D deterrence effect of price announce-

ments. Specifically, we study the impact of price announcements on innovation

outcomes and welfare in equilibrium via their R&D deterrence effect. Are price

announcements moving industries into a state of complacency, increasing the level

of prices, and eroding the consumer benefits of innovation?

We study price announcements in the context of a dynamic oligopoly model

where firms compete both in prices and in developing a new product that improves

upon the existing products. Motivated by the examples of price announcements

at media events, we assume that firms make public price announcements when

they start selling their products and then they choose how much to invest in R&D

after observing the full profile of price announcements. We interpret these R&D

investments as the resources that a firm can scale up (down) over time to accelerate

(decelerate) its effort to make a preconceived product or technology ready for the

market (e.g., the size of the research team devoted to the project).3 That is, a

3As we discuss later in the paper, we do not model the one-time R&D investments that
firms may incur to develop the prototype or concept of the new product/technology. “Direction
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greater R&D investment on average increases the speed at which a firm brings

a new product to market. To isolate the role played by price announcements in

deterring R&D, we compare the equilibrium outcomes under price announcements

with the equilibrium outcomes when firms cannot use price announcements to

strategically influence R&D investments.

We show that price announcements can be used by firms to manipulate the

(Arrow’s) replacement effect of their rivals, thereby decreasing their incentives to

innovate and moving the industry into a state of complacency. Price announce-

ments cause equilibrium prices to be higher and innovation rates to be lower relative

to the equilibrium without announcements. We show the existence of equilibria

where no R&D activity takes place (full deterrence) and equilibria where some

R&D activity takes place (partial deterrence). In some of these equilibria, the

equilibrium prices can even surpass the multiproduct monopoly prices. In all equi-

libria, the higher prices are at the expense of static profits, but they increase the

discounted value of the firm because of the lower innovation rates by rivals. Less

innovation by rival firms benefits the firm because it decreases the probability that

a rival will develop a competitive advantage.

We also examine the impact of competition on the R&D deterrence effect, where

we use the degree of differentiation between products as our measure of compe-

tition. We show that the R&D deterrence effect vanishes (i.e., the equilibrium

prices with and without price announcements are equal) in the two extreme cases

of independent goods and homogeneous goods. This is either because the goods

do not compete with each other (independent goods) or because the incentives

to undercut the rival’s price overwhelm the R&D deterrence motive of setting a

higher price (homogeneous goods). The R&D deterrence effect peaks for interme-

diate levels of differentiation, which implies that the use of price announcements

can reshape of the relationship between competition and innovation.

With respect to consumer welfare, we show that the higher prices and lower

innovation rates in the equilibrium with price announcements make consumers

worse off. We quantify the magnitude of the consumer-welfare loss in two ways.

First, we show that the decrease in consumer welfare can lead to a decrease in total

surplus relative to the case without price announcements, despite the increase in

firms’ profits. Second, the higher prices caused by the R&D deterrence effect of

price announcements may completely dissipate the consumers’ benefits from new

of research” decisions are likelier longer-run decisions and hence less likely to be affected by
short-run price announcements.
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products. That is, we find instances where consumers would be better off if firms

did not engage in R&D activity (i.e., cases with products that stay the same

forever) when price announcements are used. Both results suggest that the loss in

consumer welfare caused by the R&D deterrence effect of prices is of first order.

A number of facts makes our theory plausible. First, Wu et al. (2004) show

that the risk of cannibalizing existing products is a significant factor explaining

why firms choose to delay the introduction of new products. This finding is sig-

nificant for our work, as it links the mechanism that we study—i.e., manipulating

rival profits via price announcements—to slowdowns in innovation. Second, data

patterns in the smartphone industry align with our results on the impact of price

announcements on market outcomes. In this industry, prices have been increasing

at a rate faster than inflation (see Figure 1).4 These price increases have been

coupled with a worldwide slowdown in the rate at which consumers replace their

smartphones. Tim Cook even acknowledged this in a letter to Apple investors

on January 2, 2019: “iPhone upgrades also were not as strong as we thought

they would be.” Industry observers argue that among the factors explaining these

smartphone-replacement numbers is that consumers are less impressed with the

recent innovations found in smartphones.5

Our findings have several implications. First, they broaden our understanding

of how prices can be used to soften competition along non-price dimensions. Sec-

ond, they suggest that the R&D deterrence effect of price announcements has a

first-order effect on consumer welfare, implying that the measurement of the welfare

gains of innovation will be biased unless the strategic role of price announcements

is accounted for. Third, they provide an economic argument for why firms in inno-

vative industries make use of price announcements (although we acknowledge that

marketing and other factors may also play a role).

Our paper contributes to several strands of the literature. First, it contributes

to the literature on dynamic R&D competition. Our model resembles Loury (1979),

Lee and Wilde (1980), and Reinganum (1982) in that innovation is uncertain and

the arrival of the innovation follows a Poisson process with parameters that de-

4Price announcements have also been cited as unexpectedly high in other industries. For
example, Nintendo announced a price for its Nintendo Switch that was higher than the market’s
expectation (see “Nintendo shares dive on pricing of Switch console,” Financial Times, January
13, 2017).

5See, for example, “Samsung’s new phone shows how hardware innovation has slowed,” Fi-
nancial Post, August 9, 2018, or “Upgrade rate slows by 33 percent as we hold onto our iPhones
ever longer,” Cult of Mac, February 10, 2019.
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pend on the intensity of the firms’ R&D investments. We extend these models

by explicitly modeling the product-market game to study the interplay between

price announcements and R&D investments (see Marshall and Parra 2019 for a

similar model). In a related paper, Besanko et al. (2014) study pricing in a dy-

namic model of oligopoly with learning by doing. As in our work, the authors

show that firms manipulate prices away from the static best response to impact

learning/innovation, i.e., the authors show that learning by doing induces firms to

decrease their prices to expand quantity and speed up their learning process (and

slow down the learning process of their rivals).

Second, we contribute to the literature on the strategic use of prices to deter en-

try. Research has shown that firms may benefit from manipulating prices to signal

cost efficiency or low market profitability (Milgrom and Roberts, 1982, Harring-

ton, 1986), or to establish a reputation of being a “tough” competitor (Goolsbee

and Syverson, 2008, Kreps and Wilson, 1982). More recently, Byford and Gans

(2014, 2019) show that in markets where there is an upper bound on the firms

that can operate profitably (e.g., natural duopoly), an efficient incumbent may

have incentives to increase its price beyond its static best response to deter the

exit of an inefficient rival (e.g., by acquisition) and ultimately prevent the entry of

an efficient firm as its replacement. In all of these cases, firms sacrifice short-run

profits to deter entry and increase the value of the firm in the long run.

Our paper is related more generally to the literature on strategic investments.

A number of authors have studied sequential entry games in which a first mover

can strategically invest in capacity to affect the entry incentives of a rival. These

authors show conditions for when the equilibrium of the game features the first

mover overinvesting in capacity—meaning that some capacity is left idle in the

production stage—to deter entry (Spence, 1977, Dixit, 1980, Spulber, 1981, Bulow

et al., 1985).6

Strategic investments have also been studied in the context of R&D competi-

tions. Fudenberg et al. (1984) show that in an R&D competition game where an

incumbent has a first-mover advantage, the incumbent may choose to underinvest

in improving its cost-efficiency level in the first period to limit its profitability in

the second period, which is when entry occurs and the R&D competition begins.

The firm underinvests because it wishes to manipulate its own R&D incentives

6Other studies have analyzed the strategic use of advertising, patenting, and production-
sharing agreements to deter entry (e.g., Ellison and Ellison 2011, Gilbert and Newbery 1982,
Chen and Ross 2000).
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in future periods so as to avoid the “fat-cat effect”—i.e., a greater cost efficiency

leads to a greater profit, which increases the firm’s Arrow’s replacement effect and

makes it a weaker R&D competitor. This is in contrast to our work, where firms

use price announcements to magnify the Arrow’s replacement effect of rival firms

so as to make them weaker competitors. Closest to our work is Gallini (1984),

who shows that incumbents may use licensing agreements to share profits with

potential entrants to decrease their incentives to innovate.

Lastly, our work relates to the economics literature on facilitating practices,

which argues that advance price announcements can facilitate supracompetitive

pricing in some settings (e.g., Rotemberg and Saloner 1990 and Blair and Romano

2002 when firms face asymmetric information).7 In line with prior work, we show

that the impact of price announcements on R&D competition creates unilateral

incentives to set prices above the static best response, which causes prices and

equilibrium profits to increase relative to the competitive benchmark. Unlike pre-

vious work, however, we show that advance price announcements can also have a

negative impact on R&D investments, which has an additional effect on consumer

welfare.

The rest of the paper is organized as follows. Section 2 introduces the model,

and the equilibria with and without price announcements are discussed in Section

3 and Section 4, respectively. Section 5 discusses how the R&D deterrence effect of

price announcements impacts the relationship between competition and innovation

and Section 6 explores the impact of price announcements on welfare. Lastly,

Section 7 discusses managerial implications and concludes.

2 Model Setup

Consider a continuous-time infinitely lived oligopoly, where firms sell differentiated

goods and compete in prices. At every instant of time, and for a given vector of

market prices p, firm i earns a profit flow πi(p) = (pi − ci)qi(p), where qi is

the demand for firm i’s product, and ci is firm i’s marginal cost of production.

We assume ∂qi/∂pi < 0 and ∂qi/∂pj > 0 as well as some additional regularity

conditions that guarantee a unique equilibrium in the static-price game and a

unique solution to the problem of a multiproduct monopolist controlling the prices

of all the goods (see Appendix B for details). For ease of exposition, we present

7See Buccirossi (2008) for an extensive literature review on facilitating practices.
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our analysis for the case of a symmetric duopoly (i.e., c1 = c2 = c), and we later

argue that our results generalize to the case of n firms and cost asymmetries.

Aside from competing in prices, firms compete in developing an innovation. We

consider the case of a cost-saving innovation in our baseline model, but we later

argue that our analysis also applies to quality-enhancing innovations. The firm that

successfully innovates, which we call the leader, obtains a patented innovation that

decreases its marginal cost to βc with β ∈ (0, 1).

Firms invest in R&D by choosing a Poisson innovation rate xi at a flow cost of

κ(xi) = x2
i /2.8 The Poisson processes are independent among firms, generating a

memoryless stochastic process. Our preferred interpretation of the R&D competi-

tion is that firms are competing in bringing to market a clear and pre-determined

product or idea. That is, the R&D investments do not affect the direction of in-

novation (i.e., the product is predetermined); they only affect the speed at which

the firms can bring the product to market.9 For example, the innovation rate xi

could represent the size of the team devoted to the research project, which can be

scaled up or down over time.

We assume that after one firm successfully innovates, the industry reaches

maturity.10 Once the industry reaches maturity, firms no longer invest in R&D,

and they play a static-asymmetric-price competition game at every instant of time.

Define πl and πf to be the equilibrium profit flows earned by the leader and follower

(i.e., the firm that loses the patent race), respectively, after the new technology is

invented. Define the equilibrium prices of the leader and follower to be pl and pf ,

respectively.

As reference points, let πs be the profit flow in the unique symmetric equi-

librium of the static oligopoly price game, and let ps be the price of each firm

in this equilibrium. Similarly, let πm be the per-product profit flow earned by a

multiproduct monopolist controlling the prices of both goods, and let pm be the

multiproduct monopoly price for each good.

Lemma 1 (Profits and Prices). In equilibrium, πf < πs < πl and pl < pf < ps.

After a firm has successfully innovated, the market reaches maturity and the

8A previous version of this article characterized the equilibrium of the game when allowing for
a general strictly convex cost function. See the Online Appendix for the general characterization.

9We do not model the R&D investments that set the “direction of research” (i.e., the invest-
ments that establish the pre-determined product that the firm will invest to bring to market;
c.f. Bryan and Lemus (2017)). We acknowledge that “direction of research” decisions are likelier
longer-run decisions and thus less likely to be affected by short-run price announcements.

10We discuss the case of a sequence of innovations in the Online Appendix.
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firms no longer invest in R&D. As established in Lemma 1, the innovation gives

the leader a competitive advantage, increasing its profit flow relative to the static

oligopoly payoff and decreasing that of the follower: πf < πs < πl. The values

of the innovator (or leader) and follower are given by L = πl/r and F = πf/r,

respectively, where r is the discount rate.

Definition 1 (Post-Innovation Values). When an innovation arrives, the market

reaches maturity and the values of the technology leader and follower are given by

L = πl/r and F = πf/r, respectively.

Depending on the initial level of the marginal costs c and the magnitude of the

process innovation β, the profit flow of the leader may be higher or lower than the

per-product monopoly profit flow, πm. Because the distinction will be important

in the analysis that follows, we call an innovation incremental when πl ≤ πm and

radical when πl > πm.

Definition 2 (Incremental and Radical Innovations). An innovation is incremen-

tal when πl ≤ πm, whereas it is radical when πl > πm.

In what follows, we analyze the model under two different assumptions about

the timing of play. First, in Section 3, we follow the dynamic oligopoly literature

and study equilibrium outcomes when firms simultaneously decide on both prices

and R&D investments (see, for instance, Ericson and Pakes 1995). In this case,

prices cannot be used to strategically influence R&D investment decisions. The

model with simultaneous decisions will serve as a benchmark and help us to isolate

the strategic role played by price announcements.

In Section 4, we proceed to study the case where firms make simultaneous public

price announcements at the beginning of the game, and credibly commit to those

prices. Firms choose how much to invest in R&D in every period, conditioning

their choices on the full profile of price announcements. As previously discussed,

we interpret these investments as choosing the speed at which a new product is

brought to market.

We will focus on studying the Markov perfect equilibria of the game. At each

instant of time, firms’ strategies will be a function of the state variables of the game

only. In the case without price announcements, the only state variable is whether

the innovation has arrived; strategies in the case with price announcements also

depend on the prices announced by each firm.
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3 No Price Announcements

We first analyze the game where firms choose both prices and R&D investments

simultaneously at every instant of time.11 Because of the timing of play, firms

cannot use prices to affect their rivals’ investment choices, making it a natural

comparison for the model with price announcements.

Let r represent the discount rate. After a firm has successfully innovated,

the values of the leader (or innovator) and follower are given by L = πl/r and

F = πf/r, respectively. Let Vi represent the value of firm i at time t before any

firm has successfully innovated. Under Markov strategies and using the principle

of optimality, we can write this value as

rVi = max
pi≥0,xi≥0

{πi(pi, pj) + xi(L− Vi) + xj(F − Vi)− κ(xi)}. (1)

Equation (1) shows that the flow value of participating in the market, rVi,

is equal to the sum of firm i’s profit flow πi(pi, pj) net of the flow cost of its

R&D, κ(xi), and the expected value gains and losses in the event of an innovation.

Innovation makes firm i realize a value gain of L− Vi at a rate xi (firm i wins the

competition) and a value loss of F−Vi at a rate of xj (firm i loses the competition).

Given the rival’s strategy (xj, pj), the best-response functions of firm i are

implicitly defined by the first-order conditions

xi = L− Vi,
∂πi(pi, pj)

∂pi
= 0. (2)

The first condition in equation (2) shows that firms choose their R&D investments

by equating the incremental value of the innovation with the marginal cost of

increasing the innovation rate, xi. The incremental value of the innovation, L−Vi,
depends on firm i’s value under its current technology, Vi. The greater is Vi, the

lower are firm i’s incentives to invest in R&D (i.e., Arrow’s replacement effect).

The second condition in equation (2) shows that firms choose prices by maximizing

their static product-market profits. Let Vna, pna, and xna represent the equilibrium

values, prices, and investments, respectively, when there are no announcements.

Equilibrium existence and uniqueness is established in the following proposition.

Proposition 1 (Equilibrium with No Announcements). There is a unique sym-

metric Markov perfect equilibrium, (pna, xna, Vna), that solves equations (1) and

11A more general version of this model is discussed in Marshall and Parra (2019).
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(2). In equilibrium, pna = ps, where ps is the unique static oligopoly price, xna > 0,

and Vna ∈ (F,L).

4 Price Announcements

We next consider the case with public price announcements. The timing of the

game is as follows. At the beginning of the race, firms make simultaneous public

price announcements, and they (credibly) commit to these prices until the next

innovation arrives. Upon observing the announced prices, firms then choose how

much to invest in R&D in every period.12

We solve the game by backward induction. We first analyze equilibrium in-

vestments and establish the existence of the firms’ values for a given pair of prices

p = (pi, pj). We then use the firms’ values—which are a function of the price

announcements—to analyze the equilibrium in the pricing stage. Multiple pricing

equilibria may exist in this scenario. In every equilibrium, market prices are higher

and R&D investments are lower than those when pricing and investment decisions

are determined simultaneously (i.e., the case where price choices cannot affect the

rivals’ R&D decisions). When firms play symmetric strategies, we show the exis-

tence of an equilibrium where firms choose not to invest in R&D (full deterrence)

and other equilibria in which the investments are positive but lower than those

in the case without price announcements (partial deterrence). We also show that

prices may exceed the multiproduct monopoly prices in equilibria with partial de-

terrence, which shows that deterrence incentives significantly distort equilibrium

prices.

4.1 R&D Investments

Let Vi(p) represent the value of firm i at time t before any firm has successfully

innovated as a function of the announced prices p = (pi, pj). Using the principle

of optimality, and given beliefs about the strategy of firm j, xj, we can write firm

i’s R&D decision problem as

rVi(p) = max
xi≥0
{πi(p) + xi(L− Vi(p)) + xj(F − Vi(p))− κ(xi)}, (3)

12To simplify exposition, we assume that both firms invest in R&D. We emphasize, however,
that a firm’s incentive to announce a high price and deter a rival from introducing a new product
exists even if the firm that makes the price announcement does not have R&D capabilities.
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which depends on the vector of price announcements p. This value function has

an interpretation that is similar to that of equation (1), with the difference being

that prices are now fixed at p. We obtain firm i’s R&D investment strategy by

taking the first-order condition with respect to xi,

x∗i (p) = L− Vi(p). (4)

As before, the investment rule equates the marginal cost of increasing the innova-

tion rate, xi, with the incremental value of an innovation, L − Vi(p). Lemma 2

shows that for any price vector p, there exists a value function Vi(p) ∈ (L, F ) that

simultaneously solves equations (3) and (4).

Lemma 2 (Value-Function Existence). Fix any R&D strategy for the opponent,

xj ≥ 0. For any price vector p such that πi(p) ∈ [πf , πl+xj(L−F )), there exists a

unique function Vi(p) ∈ (L, F ) that simultaneously solves equations (3) and (4).13

4.2 Market Prices

Equipped with the value functions and R&D investment strategies, we can now

proceed to study equilibria in the price-announcement stage. At this stage, firms

take their future strategies, x∗i (p), and the strategies of their opponent, x∗j(p), as

given. Given the beliefs about pj, each firm i chooses its price announcement by

solving maxpi Vi(p).14

Firm i’s first-order condition with respect to pi is given by

dπi(p)

dpi
+
dx∗i
dpi

(F − Vi(p)− κ′(xi))︸ ︷︷ ︸
= 0 by Envelope theorem

+
dx∗j
dpi

(F − Vi(p))︸ ︷︷ ︸
R&D deterrence effect>0

= 0. (5)

That is, when firm i considers the effect of pi on its value, Vi(p), it considers both

the standard effect of price on its static profit πi and also the impact of price on the

expected value loss when losing the patent race; i.e., x∗j(p)(F−Vi(p)). This second

force arises because firms can manipulate the R&D investments of rival firms with

their price announcements, and firms wish to prevent their rivals from winning the

13Given xj and p, there is a unique value of Vi that solves equations (3) and (4). However,
multiple equilibria may exist, as firms might coordinate at different values of xj for different price
announcements p. The values of Vi(p) differ across equilibria.

14Since equation (3) does not depend on t, and as long as no firm has successfully innovated, the
firms would make the same price announcement regardless of the timing of the announcement.
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patent race. To see how the firm manipulates the R&D investments of its rival,

note that when the firm announces its price pi, the firm affects the rival’s profit

flow πj and consequently the rival’s value Vj(p). Because the R&D investments

are determined by the incremental value of the innovation, x∗j(p) = L−Vj(p), the

announced price pi has a direct impact on the rival’s R&D investment.

Lemma 3 (R&D Deterrence Effect of Price Announcements). First-order condi-

tion (5) is equivalent to

dπi(p)

dpi
+Ri(p)

dπj(p)

dpi
= 0, (6)

where Ri(p) represents how much firm i internalizes firm j’s profit when setting

its price, pi. Ri(p) is a function of p given by

Ri(p) ≡ dVi
dVj

=
Vi(p)− F

r + 2L− Vi(p)− Vj(p)
> 0. (7)

That is, the R&D deterrence effect of price announcements is positive.

Lemma 3 shows that the R&D deterrence effect of price announcements is

positive, which results in an upward pressure on prices solely driven by deterrence

motives. The lemma also shows that we can rewrite the first-order condition (6)

in a way that resembles the first-order condition of a multiproduct monopolist.

Aside from the standard effect of pi on πi, the term dπj/dpi > 0 captures the price

complementarities between the substitute goods (i.e., how much firm j benefits

from an increase in pi), and the term Ri(p) = dVi/dVj > 0 measures the impact of

an increase in firm j’s value on the value of firm i. That is, for every dollar that j

obtains from an increase in pi, dπj/dpi, firm i earns Ri(p). The firm internalizes

these pricing externalities because of the benefits of deterrence rather than because

of ownership claims.15

Proposition 2. In any interior equilibrium with price announcements, p∗i > ps

for every firm i, where ps is the static oligopoly price.

Proposition 2 is our main result. It says that in any equilibrium with price

announcements—either symmetric or asymmetric—firms will announce prices higher

15It is important to highlight that the R&D deterrence effect is solely driven by the firms’
incentives to influence the investments of their rivals and it is not driven by collusive behavior.
For results on firms’ investments under collusive behavior, see Fershtman and Pakes (2000).
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than the static oligopoly price. That is, firms are willing to give up static profits

in order to increase the overall value of their firm Vi(p) through a lower pace of

innovation by rivals.

4.3 Full Deterrence

We next characterize the set of symmetric equilibria of the game. In these equi-

libria, firms make symmetric price announcements in the first stage of the game,

which yield symmetric payoffs and values; i.e., πi(p) = πj(p) = π(p) and Vi(p) =

Vj(p) = V (p).

We start by considering the possibility of an equilibrium with full deterrence,

which happens when the price announcements cause firms to choose not to invest

in R&D: x∗i = x∗j = 0. Equation (4) shows that firms choose to invest in R&D

according to the incremental benefit of the innovation: x∗i = L − V (p). Hence,

for full deterrence to be achieved, the price announcements of firms must be such

that V (p) ≥ L, which is equivalent to setting prices such that π(p) ≥ πl, where πl

is the profit flow of the leader in the post-innovation subgame.16 Such prices only

exist when πl is less than the multiproduct monopoly profit, πm (i.e., the maximum

symmetric profit flow that firms can achieve in the pre-innovation subgame). When

πl ≤ πm, we say that the innovations are incremental (see Definition 2).

Let pfull be the lowest price such that π(p, p) = πl. Because πs < πl ≤ πm in

the case of incremental innovations (see Lemma 1), the intermediate value theorem

implies that pfull is greater and lower than the static oligopoly and multiproduct

monopoly prices, respectively: ps < pfull ≤ pm. Proposition 3 shows that when

innovations are incremental, there exists a full-deterrence equilibrium where firms

announce pfull and no innovation takes place, x∗i = x∗j = 0. The value of both firms

is equal to the value of the leader in the post-innovation subgame, V (p) = L, even

though the new product is never invented.

Proposition 3 (Full-Deterrence Equilibrium). Assume L−F ≥ r. When innova-

tions are incremental (i.e., πl ≤ πm), there exists a full-deterrence equilibrium, in

which pfull = min{p : π(p, p) = πl}, xfull = 0, and Vfull = L. In this equilibrium,

firms completely deter rivals from investing in R&D by announcing prices that are

lower than the multiproduct monopoly price (pfull ≤ pm) but higher than the static

oligopoly price (pfull > ps).

16To see this, note that when xi = xj = 0, V (p) = π(p)/r.
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We note that the derivative of Vi with respect to pi at pfull = (pfull, pfull) is

positive, suggesting that the benefits of R&D deterrence exceed the costs of setting

a price higher than the static best response even at the equilibrium prices. To see

this, note that V (pfull) = L implies that R(pfull) = (L− F )/r ≥ 1 (see equation

(6) for the definition of R(p)).17 Hence, the derivative of Vi with respect to pi at

pfull is given by

dπi(pfull)

dpi
+Ri(pfull)

dπj(pfull)

dpi
≥ dπi(pfull)

dpi
+
dπj(pfull)

dpi
> 0,

where the first inequality follows from R(pfull) ≥ 1 and the second one follows from

both pfull < pm and the stability of the multiproduct monopoly solution. Why are

firms not increasing their prices beyond pfull if the derivative is positive at that

point? Because firms cannot be further deterred, as they have already reached the

zero lower bound of R&D investments: x∗ = 0. Therefore, the R&D deterrence

effect is zero for any price pi beyond pfull. Mathematically, the derivative of Vi with

respect to pi is discontinuous at pfull. The derivate is given by equation (6) for any

price pi ≤ pfull, and it is given by ∂πi(pi, pfull)/∂pi < 0 for any price pi > pfull. As

in the rest of the literature on strategic deterrence, these results show that firms

are willing to sacrifice static market profits to increase their discounted value via

R&D deterrence (Vfull > Vna).

The assumption L − F ≥ r (or, equivalently, πl − πf ≥ r2) in the statement

of the proposition restricts the value gain of being the industry leader (L − F )

to be at least r. Although in equilibrium firms end up increasing their value, the

assumption guarantees that the net benefits of deterrence are high enough that a

firm is willing to unilaterally pay the cost of setting a high price in order to deter

their rival’s R&D. From the analysis above one can see that the condition L−F ≥ r

guarantees the existence of a full-deterrence equilibrium, but it is not necessary

for its existence. That is, it is possible to have a full-deterrence equilibrium even

if innovations provide a very small competitive advantage (i.e., if πl − πf < r2).

4.4 Partial Deterrence

We next characterize the set of symmetric equilibria of the game where firms are

only partially deterred, that is, equilibria where firms choose R&D investments

that are positive but lower than the investments in the case without price an-

17Here, we make use of the assumption L− F − r ≥ 0 in the statement of Proposition 3.
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nouncements. We show that two equilibria with partial deterrence can exist: the

low- and high-deterrence equilibria.18

The most notable difference between these equilibria is that firms are more ag-

gressive in a high-deterrence equilibrium. This aggressiveness leads to lower R&D

levels and higher prices relative to those in the low-deterrence equilibrium. The

aggressiveness of firms in deterring their rivals shows up in the value of R(p) (see

equation (7)), which captures the extent to which firms internalize rival profits

when setting prices. In the low-deterrence equilibrium, a firm less than fully in-

ternalizes the profits of its rival, R(p) ∈ (0, 1), whereas in the high-deterrence

equilibrium, a firm more than fully internalizes the profits of its rival, R(p) > 1.

The most notable difference between these equilibria is that the R&D levels in

the high-deterrence equilibrium are lower than those in the low-deterrence equi-

librium. This happens because firms are more aggressive in deterring their rivals

in the high-deterrence equilibrium, which leads to higher equilibrium prices (and

thus less incentives to innovate). The aggressiveness of firms in deterring their

rivals shows up in the value of R(p) (see equation (7)), which captures the extent

to which firms internalize rival profits when setting prices. In the low-deterrence

equilibrium, a firm less than fully internalizes the profits of its rival, R(p) ∈ (0, 1),

whereas in the high-deterrence equilibrium, a firm more than fully internalizes the

profits of its rival, R(p) > 1.

We show that the low-deterrence equilibrium always exists, whereas the high-

deterrence equilibrium can only exist when innovations are incremental (i.e., πl ≤
πm) for reasons that relate to the discussion in the previous paragraph. Because

firms are aggressively deterring their rivals in the high-deterrence equilibrium, firms

need to coordinate at prices that earn them profit flows that are higher than the

profit flow earned by the successful innovator (πl). This is only possible when

innovations are incremental (i.e., πl ≤ πm). We summarize this discussion in the

following lemma.

Lemma 4 (Properties of Partial-Deterrence Equilibria).

i) When the innovations are radical (i.e., πl > πm), the Vlow solution is the only

candidate for equilibrium. When innovations are incremental (i.e., πl ≤ πm),

both solutions are candidates.

18This follows from the fact that the equilibrium value functions (i.e., V (p) = Vi(p) = Vj(p))
solve a quadratic equation with two possible solutions: Vlow and Vhigh (see equation (13) in
Appendix A).
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ii) In any solution Vlow, a firm less than fully internalizes the profits of its ri-

val, R(p) ∈ (0, 1), whereas in any solution Vhigh, a firm more than fully

internalizes the profits of its rival, R(p) > 1.

Low-Deterrence Equilibrium Because the Vlow solution is defined for all types

of innovation, we start by characterizing the low-deterrence equilibrium and show-

ing that only mild conditions are needed for its existence.

In Proposition 2 we showed that any equilibria with price announcements fea-

ture prices that are higher than the static oligopoly prices. We can now also say

that the equilibrium prices in any low-deterrence equilibria, plow, are lower than

the multiproduct monopoly price, pm. To see this, we note that the derivative of

the value function Vi(p) with respect to pi at the multiproduct monopoly prices

pm is negative,19

dπi(pm)

dpi
+R(pm)

dπj(pm)

dpi
<
dπi(pm)

dpi
+
dπj(pm)

dpi
= 0,

where the inequality follows from dπj(p)/dpi > 0 and R(p) ∈ (0, 1) in any low-

deterrence equilibrium (see Lemma 4). Similarly, the derivative above evaluated

at the static oligopoly prices ps is positive both because the R&D deterrence effect

is positive and dπi(ps)/dpi = 0 at ps. Therefore, from the intermediate value

theorem, it follows that there exists a symmetric price vector (plow, plow) with

plow ∈ (ps, pm) that solves the first-order condition (6).

The existence and uniqueness of a low-deterrence equilibrium is discussed in

the following proposition. In the proposition, we provide a sufficient (although

not necessary) condition for equilibrium uniqueness based on a function of the

primitives of the model,

Ψ(p) =
∂2πi(p)

∂p2
i

+ max

{
0,
∂2πj(p)

∂p2
i

}
− Λ

∂πi(p)

∂pi

∂πj(p)

∂pi
, (8)

where p = (p, p) and Λ = (3/(r + 2(L − F )))2) > 0. Assuming that Ψ(p) < 0 for

all p ∈ (ps, pm) is sufficient to guarantee that there exists a unique low-deterrence

equilibrium. This condition guarantees that the pricing problem is concave (given

the optimal R&D strategies in equation (4)). Below we provide examples with

linear and logit demand functions where this condition is satisfied (see Table 1).

19For notational ease, we use ps and pm to denote the vectors (ps, ps) and (pm, pm), respec-
tively.

17



Proposition 4 (Low-Deterrence Equilibrium). Assume Ψ(p) < 0 for all p ∈
(ps, pm). There exists a unique low-deterrence symmetric Markov perfect equilib-

rium, (plow, xlow, Vlow). In this equilibrium, firms deter their rivals’ R&D (xlow <

xna) by announcing higher prices (plow ∈ (pna, pm)) and they earn greater profits

(Vlow > Vna) relative to the case without price announcements.

High-Deterrence Equilibrium We next focus on the high-deterrence equilib-

rium. As noted in (see Lemma 4), in this equilibrium a firm aggressively deters

R&D investments by more than fully internalizing the profits of its rival when set-

ting its price: R(p) > 1. This implies that the derivative of Vi(p) with respect pi

(see equation (6)) is nonzero for any symmetric-price vector with prices between ps

and pm (i.e., the static oligopoly and multiproduct monopoly prices, respectively).

Hence, if an equilibrium exists, it must feature an equilibrium price, phigh, that

exceeds the multiproduct monopoly price: phigh > pm.

As noted in Lemma 4, the high-deterrence equilibrium can only exist when

innovations are incremental (i.e., πl ≤ πm) for reasons that relate to our discus-

sion of the full-deterrence equilibrium. That is, firms will only choose to make a

low R&D investment if their Arrow’s replacement is high: x∗i (p) = L − Vi(p). In

particular, the degree of deterrence in the high-deterrence equilibrium can only be

sustained if firms coordinate at prices that earn them profits that exceed those

earned by the successful innovator, πl, which is only feasible in the case of incre-

mental innovations (see the proof of Proposition 1 for details).20 We note that

no such restriction on the level of profits exists in the low-deterrence equilibrium,

which is why it always exists.

Although equilibrium profit levels exceed those earned by the successful inno-

vator, π > πl, the value of firms in a high-deterrence equilibrium is less than the

value of the successful innovator: Vhigh < L. This happens because firms still

perform some R&D in this equilibrium, which is costly both because the R&D

has to be paid for and positive R&D levels create the possibility that a rival firm

will win the patent race (and develop a competitive advantage). We summarize

this discussion of the properties of a high-deterrence equilibrium in the following

proposition.

20Depending on the parameters of the model, the vector p that solves equation (6) may or
may not satisfy the restriction that the profit flow is in the interval [πl, πm]. For this reason, a
high-deterrence equilibrium may not always exist.
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Proposition 5 (High-Deterrence Equilibrium). Assume L− F ≥ r. When inno-

vations are incremental (i.e., πl ≤ πm), there may exist a high-deterrence equi-

librium, (phigh, xhigh, Vhigh). In this equilibrium, firms announce prices that are

higher than the multiproduct monopoly price (phigh > pm), deter their rivals’ R&D

(xhigh < xlow) by more, and earn greater profits (Vhigh > Vlow) relative to the

low-deterrence equilibrium.

The statement of the proposition assumes that the innovation provides the

leader with a sufficiently large competitive advantage: L− F ≥ r. This condition

is necessary because if it fails to hold, the R&D investments become negative, which

is both infeasible and inconsistent with the assumption of an interior solution that

was used in the construction of the equilibrium. In economic terms, the assumption

guarantees that the benefits of R&D deterrence are high enough that a firm is

willing to set a high price to deter its rival.21

4.5 Examples

To illustrate our results and the existence of multiple equilibria with different lev-

els of R&D deterrence, we present a series of examples in Table 1. In Panels A

and B of Table 1, we present examples with linear and logit demand functions,

respectively. In both panels, we keep the demand function, the marginal cost (c),

and the discount rate (r) fixed throughout the examples. The magnitude of the in-

novation (β) is the only parameter that varies across examples. Each panel has the

same taxonomy. Columns I and II present examples with incremental innovations

(πl ≤ πm). From Lemma 4 we know that a high-deterrence equilibrium may exist

whenever the innovation is incremental; however, we find that a high-deterrence

equilibrium only exists in Column I of each panel (i.e., a high-deterrence equilib-

rium is not guaranteed to exist when the innovation is incremental). In contrast,

the full-deterrence equilibrium always exists when innovations are incremental.

Column III presents an example with a radical innovation (πl > πm), where we

know from Lemma 4 that only a low-deterrence equilibrium may exist. In all of the

examples we have that Ψ(p) < 0 for all p ∈ (ps, pm) (see Proposition 4), implying

a unique low-deterrence equilibrium.

21See the last paragraph of our discussion of the full-deterrence equilibrium for a related dis-
cussion.
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Panel A: Linear Demand Panel B: Logit Demand
I II III I II III

Demand qi =
2− 4pi + 2pj

3
qi =

exp{−pi}
1 + exp{−pi}+ exp{−pj}

β 0.9 0.75 0.4 0.88 0.8 0.5
Other parameters c=0.2, r = 0.05 c=0.13, r = 0.03
Innovation type Increm. Increm. Rad. Increm. Increm. Rad.

Existence/Uniqueness
Existence high eq. Yes No - Yes No -
Uniqueness low eq. Yes Yes Yes Yes Yes Yes

Prices
ps 0.4667 0.4667 0.4667 1.3379 1.3379 1.3379
pm 0.6 0.6 0.6 1.5532 1.5532 1.5532
plow 0.5015 0.4894 0.4897 1.4119 1.3896 1.3883
phigh 0.6641 - - 1.5961 - -
pfull 0.5125 0.5999 - 1.4376 1.5530 -

R&D
pacena 0.2391 0.5973 1.4803 0.1481 0.2430 0.6022
pacelow 0.1836 0.5824 1.4739 0.1123 0.2276 0.5957
pacehigh 0.0613 - - 0.0403 - -
pacefull 0 0 - 0 0 -

Consumer Surplus
CSna 3.8720 4.0184 4.3858 14.1265 14.1772 14.3726
CSlow 3.7654 3.9930 4.3752 13.9484 14.1084 14.3451
CShigh 2.8178 - - 12.9471 - -
CSfull 3.1686 2.1342 - 12.9549 11.7641 -

Total Surplus
TSna 7.6957 7.9064 8.4582 28.0147 28.0906 28.3855
TSlow 7.6446 7.8959 8.4540 27.8724 28.0374 28.3646
TShigh 6.8192 - - 26.9430 - -
TSfull 7.2313 6.6195 - 26.9912 25.9206 -

Table 1: R&D Deterrence Effect: Numerical Examples

Note: An innovation is incremental (Increm.) or radical (Rad.) when πl ≤ πm and πl >
πm, respectively. Existence high eq. indicates whether a high-deterrence equilibrium exists.
Uniqueness low eq. indicates whether the condition for low-deterrence equilibrium uniqueness in
Proposition 4 is satisfied. ps, pacena are the equilibrium outcomes under no price announcements,
where pace is defined as 2x. plow, pacelow and phigh, pacehigh are the equilibrium outcomes with
price announcements in a low- and high-deterrence equilibrium, respectively. Consumer surplus
(CS) is defined in equation (11), and total surplus is given by CS + 2V , where V is the value of
a firm at the beginning of the game. The condition L−F − r > 0 holds in all of these examples.
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4.6 Discussion: The Role of the Assumptions

We finish the section by discussing the key assumptions needed for the R&D de-

terrence effect of price announcements to hold, and those that are immaterial to

the result.

Price commitments In our baseline model, firms announce and commit to a

price until the next innovation arrives. Two observations are in order. First, rather

than being an assumption, the commitment until the next innovation arrives is a

result of a lack of change in the state variables during this period (i.e., no demand

or cost shocks in the pre-innovation phase). That is, because the environment

remains unchanged in the pre-innovation phase of the game, firms face no incentives

to revise their price announcements. Second, we emphasize that committing to a

price until the next innovation arrives is not central to our results. As long as price

announcements are a commitment lasting any positive measure of time, they will

affect the continuation value of their opponents, rendering price announcements

effective in deterring the R&D of rivals. To address both of these points, the

Online Appendix presents an extension of the model where we allow for demand

shocks that lead to price-announcement revisions in the pre-innovation phase of

the game.22 All of our results carry through.

Innovation uncertainty Innovation uncertainty plays an important role in the

firms’ ability to deter R&D. To illustrate this point, consider the firms’ incremental

value of the innovation when firms are certain that they will achieve a breakthrough

at a known date t̄. In this case, the incremental value of the innovation is the

difference between the value of inventing the innovation and the value of choosing

not to invent the product, both measured at time t̄. The pre-innovation prices (or

values) are irrelevant for computing the incremental value of the innovation, which

implies that they do not impact R&D decisions.

Things are different when there is innovation uncertainty—i.e., when the firms

do not know when they will achieve a breakthrough. With uncertainty, the in-

cremental value of the innovation is the value of inventing the product minus the

value of remaining in the innovation race (i.e., the pre-innovation value). Because

22Demand shocks have incentivized firms to revise their price announcements. See, for instance,
“Amazon just drastically dropped the price of its Fire phone,” Business Insider, November 26,
2014.
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the pre-innovation price announcements directly affect the pre-innovation values,

these are effective tools in deterring R&D investments.

Continuous versus lumpy R&D investments In our baseline model, firms

invest in R&D at every instant of time. An alternative modeling assumption would

be that the R&D investments are a one-time investment rather than an ongoing ef-

fort. We note that the R&D deterrence effect of price announcements would fail to

hold in an environment with lumpy R&D investments because firms would be un-

able to credibly commit to a price announcement. This can be seen by noting that

before the firms make their R&D investment decisions, every firm has incentives

to deter their rivals’ R&D investments. However, as soon as the firms make their

R&D decisions, all firms have incentives to revise their price announcements and

set their prices according to their static best-response functions. This is because

firms are no longer conducting R&D so there are no reasons to increase the price

beyond the static best-response price. Firms foresee that price announcements are

meaningless and are thus undeterred by price announcements in this case.

While we acknowledge that designing a product has fixed R&D costs, we also

believe that bringing the product to market requires an ongoing effort that can be

scaled up or down (e.g., by allocating more researchers to the task). Our analysis

suggests that price announcements are only effective in deterring the latter.

Timing versus magnitude of the innovation In our baseline model, the R&D

investments impact the probability of inventing the innovation but do not affect

the innovation itself (e.g., the magnitude of the cost reduction). We note that the

R&D deterrence effect of price announcements does not arise in a model where

R&D investments only impact the magnitude of the innovation (i.e., the pace of

innovation is exogenous). In this setting, the incremental value of increasing the

magnitude of the innovation in dxi is given by how it changes the post-innovation

value of the leader (dL(xi)). Because the incremental value of the innovation does

not depend on pre-innovation prices (or values) in this case, these prices cannot

deter R&D investments.

Other assumptions In the Online Appendix, we extend the model to show

that the R&D deterrence effect of price announcements also exists in more general

environments. With respect to market structure, we consider the cases with n

symmetric players and the duopoly case with asymmetric firms. With respect to
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the nature of innovations, we consider the case of sequential innovations (i.e., a

sequence of patent races) and the case of quality-enhancing innovations. Lastly, we

allow for more general cost functions. All of our results hold in these extensions.

5 Price Announcements and the Relationship be-

tween Innovation and Competition

The impact of competition on innovation outcomes is a long-standing question

that stems from the work of Schumpeter (1942) and Arrow (1962). This question

continues to attract new work both because of a lack of consensus in the literature

and its relevance for competition policy (e.g., see Loury 1979, Lee and Wilde 1980,

Aghion et al. 2001, 2005, Vives 2008, Marshall and Parra 2019). We contribute

to this debate by studying whether price announcements have an impact on the

relationship between competition and innovation.

To answer this question, we parameterize the model using the demand system

in Singh and Vives (1984), where the demand for good i is given by

qi =
1

1 + σ
− 1

1− σ2
pi +

σ

1− σ2
pj, (9)

and σ is restricted to be in the unit interval to capture the case of substitute

goods. This demand system can capture various degrees of product differentiation.

The two extreme cases of this system are the case of independent goods when

σ = 0 (full differentiation) and the case of homogeneous goods when σ → 1 (no

differentiation). Henceforth, we use σ as our measure of competition between

products.

We start by analyzing the impact of competition on the magnitude of the R&D

deterrence effect: pa− ps (i.e., the price difference between the equilibria with and

without price announcements). We focus on the low-deterrence equilibrium, as it

is the only equilibrium that exists for all types of innovations (i.e., incremental or

radical). Using equations (6) and (9), we can write the equilibrium markup as

pa − c =
(1− σ2)q(pa)

1− σR(pa)
. (10)

Similary, we can write the equilibrium markup without price announcements as

ps − c = (1− σ2)q(ps).
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Figure 2: R&D Deterrence Effect and Product Differentiation

Note: The figure shows the equilibrium prices with price announcements (pa), without price
announcements (ps), and the multiproduct monopoly price for the following parameters: r = 0.15,
β = 0.65, and c = 0.2, σ ∈ [0, 0.97].

Equation (10) captures how competition affects the R&D deterrence effect. In

the case of independent products (σ = 0), firms have no incentives to deter their

rivals’ R&D investments, as rival prices do not impact a firm’s profits. When

instead σ approaches one, the goods become homogeneous. When choosing prices,

the firms face a tension between the incentives to undercut the rival in the product

market and the incentives to increase prices to deter the R&D investments of the

rival. Equation (10) shows that the incentives to undercut the rival are stronger, as

the price markup go to zero when σ → 1. In both of these extreme cases, equation

(10) equals the equilibrium markup under no price announcements, suggesting that

the use of price announcements does not impact the competition intensity between

firms (i.e., prices and R&D investments are undistorted).

From equation (10), one can also see that the R&D deterrence effect is positive

(pa > ps) for all intermediate values of competition (i.e., σ ∈ (0, 1)). This follows

from the fact that R(p) < 1 in any low-deterrence equilibrium, which causes the

denominator in equation (10) to be strictly less than one. The greater equilibrium

markups when firms use price announcements show the benefits of keeping inno-

vation capabilities in industries where price announcements are used, as the threat

of developing a competitive advantage prompts rivals to engage in “profit sharing”

to decrease the probability of that competitive advantage materializing (i.e., the
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R&D deterrence effect of price announcements).

The following proposition summarizes these results, and Figure 2 illustrates

them with a numerical example.

Proposition 6 (R&D Deterrence Effect and Competition). The R&D deterrence

effect is non-monotonic in the degree of competition (σ). The effect is positive for

σ ∈ (0, 1) (i.e., pa > ps and xa < xna), and it vanishes both when products are

independent (σ = 0) and when products are homogeneous (σ → 1) (i.e., pa = ps

and xa = xna).

Figure 2 also shows that because the R&D deterrence effect of price announce-

ments increases in magnitude for intermediate values of competition, the R&D

deterrence effect has an impact on the relationship between competition and the

pace of innovation. Without price announcements, the pace of innovation decreases

for values of σ in the range between 0 and 0.45 and then increases in σ for values

larger than 0.45. The R&D deterrence effect of price announcements changes the

relationship between innovation and competition in that the pace of innovation in-

creases in σ for a smaller set of parameters (σ ∈ (0.79, 1)). This implies that there

are values of σ for which the relationship between competition and innovation has

different signs in the case with and without price announcements (e.g., σ = 0.5).

These results suggest that if price announcements are not modelled, a researcher

may incorrectly measure the relationship between competition and innovation in

structural empirical studies of industries where price announcements are used.

6 Price Announcements and Consumer Welfare

The analysis in Section 4 reveals that price announcements unambiguously benefit

firms in all equilibria with price announcements when compared to the equilibrium

with no price announcements (see Propositions 3-5). We next turn to studying

how price announcements impact consumer welfare in two different ways. We first

compare consumer welfare in the equilibria with and without price announcements,

and we then study the impact of innovation on consumer welfare in a world where

firms always use price announcements.
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6.1 Consumer Welfare

Propositions 3, 4, and 5 establish that consumers face both higher prices in the

pre-innovation phase and a lower pace of innovation when firms make price an-

nouncements (i.e., pa > ps and xa < xna). These effects lead to two types of

price increases. The first is a price increase that is immediate and lasts until one

firm succeeds in the innovation race (i.e., pa > ps). The second is a price increase

that arises from the fact that the innovation will on average be invented later in

time (xa < xna). That is, a slower pace of innovation implies that consumers will

pay the higher prices of the pre-innovation phase of the game for a longer period

of time. These price increases combined imply that consumers will face weakly

greater prices throughout the industry lifetime in the equilibrium with price an-

nouncements, which leads us to conclude that price announcements negatively

impact consumer welfare.

To see this more formally, define cs(p) to be the consumer surplus flow at prices

p. We assume that consumers purchase both products and they have a downward

sloping demand function for each good. This assumption implies that cs(p) is

strictly decreasing in each dimension of p. Define the expected discounted con-

sumer surplus in the market as a function of pre-innovation prices p and innovation

pace λ by

CS(p, λ) =
1

r

(
rcs(p) + λcs(pl, pf )

r + λ

)
, (11)

where cs(p) is the consumer surplus flow at the vector of pre-innovation prices p,

cs(pl, pf ) is the consumer surplus flow after the innovation reaches the market, and

λ = 2x is the pace of innovation in the pre-innovation period (see Appendix C for

details).

CS(p, λ) equals the value of a perpetuity that pays consumers a convex combi-

nation of cs(p) and cs(pl, pf ), where the weight on cs(pl, pf ) increases as a function

of the pace of innovation λ. We can easily establish that CS(p, λ) is decreasing

in the pre-innovation prices p. CS(p, λ) is also increasing in λ for any vector p

such that cs(p) < cs(pl, pf ). These two properties imply that consumer welfare

in any equilibrium with price announcements is less than consumer welfare in the

equilibrium without price announcements: CS(ps, λna) > CS(pa, λa).
23

23To establish this inequality, we use Lemma 1, which establishes that the pre-innovation prices
in the equilibria with and without price announcements are higher than the post-innovation
prices: pl < pf < ps < pa.
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Proposition 7 (R&D Deterrence Harms Consumers). Consumer welfare with

price announcements is less than consumer welfare without price announcements.

Table 1 shows examples of the consumer-welfare loss caused by price announce-

ments. In all of the examples in the table, the loss in consumer welfare dominates

the profit gains of price announcements, which implies that price announcements

can also cause a decrease in total surplus.

6.2 Consumer Benefits of Innovation

Proposition 7 establishes that consumers are worse off in any equilibrium with

price announcements relative to the equilibrium without price announcements. In

this subsection, we pursue a different question. In a world where all firms use price

announcements, would consumers be better off if firms did not conduct R&D?

Although the answer is always affirmative in the equilibrium with full deterrence

(i.e., consumers pay prices higher than the static oligopoly prices and the innova-

tion never arrives), it is less obvious in the equilibria with partial deterrence.

If all firms use price announcements, why would consumers be better off if

firms did not conduct R&D? From Propositions 3, 4, and 5 we know that the

prices faced by consumers in the period before a firm successfully innovates (pa)

are higher than the static oligopoly prices (ps), but Lemma 1 also establishes

that consumers directly benefit when the innovation reaches the market, as prices

fall: pl < pf < ps < pa. These opposing effects on prices could lead to cases

where the R&D deterrence effect of price announcements (pa > ps) outweighs the

positive impact of innovation on consumer welfare (pl, pf < ps) even in equilibria

with partial deterrence. That is, price announcements may cause innovation to be

welfare decreasing despite the consumer benefits of a new technology.

To answer the question of whether consumers benefit from innovation despite

the R&D deterrence effect of price announcements, we compare the expected dis-

counted consumer surplus under price announcements CS(pa, λa) (see equation

(11)) with the consumer surplus that exists with no R&D competition whatsoever;

i.e., CSNo Innov = cs(ps)/r. The difference between CS(pa, λa) and CSNo Innov can

be written as

∆CS =
1

r(r + λ)

r(cs(pa)− cs(ps))︸ ︷︷ ︸
<0

+ λ(cs(pl, pf )− cs(ps))︸ ︷︷ ︸
>0

 .
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Figure 3: R&D Deterrence Effect and Consumer Benefits of Innovation

Note: The figure shows ∆CS = CSa − CSNo Innov for the following parameters: r = 0.04,
β = 0.9, c = 0.08, qi = 1

1+σ −
1

1−σ2 pi + σ
1−σ2 pj with σ ∈ [0, 0.24] capturing the degree of

differentiation between products (see Section 5 for a detailed discussion of this demand system).
The sufficiency condition for equilibrium uniqueness, Ψ(p) < 0 for p ∈ [ps, pm], is satisfied for
every value of sigma. The equilibrium outcomes reported in the figure correspond to those in the
low-deterrence equilibrium.

The first term in the parentheses is negative because of the R&D deterrence ef-

fect (pa > pna = ps) and captures the loss in welfare due to the higher prices

in the pre-innovation phase of the game. The second term in the parentheses is

positive because consumers face lower prices once the innovation reaches the mar-

ket (pl, pf < pa). Depending on the relative magnitude of each of these terms,

consumers may be worse off when firms perform R&D.

Figure 3 shows that depending on the parameters of the model, consumers may

benefit or lose with R&D competition. For some parameters, the R&D deterrence

effect fully dissipates the utility gains of innovation (e.g., σ = 0.2). While for

other parameters, consumers are still better off with innovation competition despite

the R&D deterrence effect (e.g., σ = 0.1). Regardless, we conclude that the

R&D deterrence effect is of first order in understanding the consumer benefits of

innovation.

Proposition 8 (Welfare Dissipation). The R&D deterrence effect of price dissi-

pates the consumer benefits of innovation in all full-deterrence equilibria, and it

may also do so in partial-deterrence equilibria.

28



7 Concluding Remarks

We study how price announcements affect equilibrium market prices, firms’ inno-

vation rates, and welfare outcomes in a dynamic oligopoly model. We find that

under price announcements, prices are always greater than the static oligopoly

prices and may even exceed the multiproduct monopoly prices. Although price

announcements are profitable for firms, price announcements decrease consumer

surplus and may even decrease total surplus. The decrease in consumer surplus

is caused by both higher prices and lower R&D investments. We show that the

higher prices in the equilibrium with price announcements can even dissipate the

consumer benefits of innovation. That is, we show instances where consumers

would be better off if the industry exhibited no R&D activity whatsoever (i.e.,

when products stay the same forever). These results combined suggest that the

effect of price announcements on consumer welfare is of first order and that the

measurement of the welfare benefits of innovation will be biased unless the strategic

price effects associated with R&D deterrence are considered.

These results provide an economic rationale for the use of price announcements

in media events by tech firms. Our findings have strong managerial implications

on the trade-offs that firms face when laying out their pricing strategies. Al-

though pricing new products aggressively may attract new consumers—increasing

the market share and short-run profits of the new products—competitors may re-

act with an aggressive R&D plan. Depending on the firms’ capabilities relative to

competitors to come up with new products, the manager may prefer to avoid an

intensification of R&D competition. This is particularly true in mature industries

where product improvements are less clear and require large investments.
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A Omitted Proofs

Proof of Lemma 1. Using the envelope theorem and the demand regularity conditions
(A), (B), and (D) (see section C of the Appendix) we find:

dpi
dci

= −
− dqi
dpi

2 dqidpi
+ d2qi

dp2i
(pi − c)

∈ (0, 1),
dpj
dpi

= −
dqj
dpi

+
d2qj
dpidpj

(pj − c)

2
dqj
dpj

+
d2qj
dp2j

(pj − c)
∈ (0, 1).

Since
dpj
dci

=
dpj
dpi

dpi
dci

< dpi
dci

, prices are lower when the cost-saving innovation arrives. In
particular, pl < pf < ps. Similarly for the profits we find:

dπj
dci

=
dqj
dpi

dpi
dci

(pj − c) > 0,
dπi
dci

= −qi +
dqi
dpj

dpj
dpi

dpi
dci

(pi − c).

Given the results above, it is easy to see that dπj/dci is positive. For dπi/dci, observe
that at the prices satisfying the first order condition:

dπi
dci

=

(
dqi
dpi

+
dqi
dpj

dpj
dpi

dpi
dci

)
(pi − c) <

(
dqi
dpi

+
dqi
dpj

)
(pi − c) < 0,

where we use dpj/dpi and dpi/dci ∈ (0, 1) for the first inequality, and demand regularity
condition (C) for the second. We conclude that πf < πs < πl. �

Proof of Proposition 1. The first-order condition for price in equation (2) and the
demand regularity conditions imply that ps = (ps, ps) is the unique equilibrium price
vector and πs = πi(ps) is the equilibrium profit earned by the firms.

Fix an arbitrary profit flow π. Replacing the R&D investment rule (2) in equation
(3) and using symmetry, we obtain

rV = π +
1

2
(L− V )2 + (L− V )(F − V ) (12)

which is a quadratic equation in V . Solving we obtain two candidate solutions

Vlow,high =
(

2L+ F + r ±
√

(L− F − r)2 + 6(rL− π)
)/

3. (13)

This solution is well defined when the square root is non-negative. That is, whenever
π ≤ π ≡ πl + ((πl − πf )/r − r)2/6. Define ρ =

√
(L− F − r)2 + 6(rL− π). Replacing

the solutions of V in the first order condition (2) yields the R&D investments, which
are given by xlow = (L − F − r + ρ)/3 and xhigh = (L − F − r − ρ)/3. It can be easily
verified that xlow is non-negative whenever π ≤ πl. Similarly, xhigh is non-negative when
L− F ≥ r and π ∈ [πl, π]. Since in the no-announcement scenario πs < πl, only Vlow is
a feasible solution and the equilibrium is given by Vna = Vlow(πs) and xna = xlow. �

Proof of Lemma 2. Fix x̂j and replace the R&D strategy (4) into equation (3) to
define:

φ(V ) = πi(p) +
1

2
(L− V )2 + x̂j(F − V )− rV. (14)

Observe that φ(V ) = 0 defines a solution to problem (3). Note that φ(L) = πi(p)−πl−
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x̂j(L− F ) is negative for all πi(p) < πl + x̂j(L− F ). Also, φ(F ) = πi(p)− πf + 1
2(L−

F )2 > 0, which is positive for πi(p) ∈ [πf , πl]. Therefore, by the intermediate value
theorem, there exists a value of V ∈ (F,L) such that φ(V ) = 0. This value is unique as
φ′(V ) = −(L− V + x̂j + r) < 0 for all V ∈ [F,L] so that φ crosses zero only once. �

Proof of Lemma 3. We start by studying the expression for dxj(p)/dpi. Using the
equilibrium R&D investments (4) we know that dxj(p)/dpi = −dVj(p)/dpi. Replacing
the optimal investments into equation (3) for firm j and taking the total derivative with
respect to pi we obtain

r
dVj
dpi

=
dπj
dpi

+
dxj
dpi

(L− Vj)− xj
dVj
dpi

+
dxi
dpi

(F − Vj)− xi
dVj
dpi
− κ′(xj)

dxj
dpi

.

Using equation (4) (i.e., κ′(xj) = xj = (L−Vj)) and the envelop theorem (i.e., dxi(p)/dpi =
−dVi(p)/dpi = 0) we obtain

r
dVj
dpi

=
dπj
dpi
− xj

dVj
dpi
− xj

dVj
dpi

⇒ dVj
dpi

=
dπj/dpi

r + xj + xi
.

Replacing back into equation (5) and rearranging we obtain equation (6). Finally, to see
that Ri(p) can be interpreted as Ri(p) = dVi/dVj , replace the optimal investments into
equation (3) for firm i and take the total derivative with respect Vj to obtain

r
dVi
dVj

=
dxi
dVj

(L− Vi)− xi
dVi
dVj

+
dxj
dVj

(F − Vi)− xj
dVi
dVj
− κ′(xi)

dxi
dVj

.

Using equation (4), κ′(xi) = (L− Vi), and dxj(p)/dVj(p) = −dVj/dVj = −1, we obtain

r
dVi
dVj

= −xi
dVi
dVj

+ (Vi − F )− xj
dVi
dVj

⇒ dVi
dVj

=
Vi − F

r + xj + xi
> 0

and the interpretation given in equation (7) follows. �

Proof of Proposition 2. Consider first the scenario without price announcements.
Using the first order condition for price in (2) we can construct the best response function
of firm i to any price p chosen by firm j, call it bsi (p). Because of symmetry, both firms
have the same best response function in the this scenario. We show that the best response
function with price announcement, bai (p), satisfies bai (p) > bsi (p) for all p. Therefore, if
the best responses with price announcement cross each other, they must do so at a higher
price than ps.

Start by observing that the first-order condition (6) evaluated at bs satisfies

dπi(b
s(pj), pj)

dpi
+R(bs(pj), pj)

dπj(b
s(pj), pj)

dpi
= R(bs(pj), pj)

dπj(b
s(pj), pj)

dpi
> 0,

where the equality holds because dπi(b
s(pj), pj)/dpi = 0 by definition of a best response

function. This implies that equation (6) is greater than zero at every price that is a best
response bsi to pj . Given that, for every vector of market prices p, Ri(p)dπj(p)/dpi > 0
and that d2πi(p)/dp2

i < 0 due to the strict concavity of the profit function, if equation
(6) holds, it must be at a pi > bs(pj). That is, ba(pj) > bs(pj). �
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Proof of Proposition 3. We start by showing that pfull exists. Then we show that it
is an equilibrium. Observe that the function f(p) ≡ π(p, p) is continuous and concave.
Since f(ps) = πs, f(pm) = πm, and innovations being incremental (i.e., πl < πm) by
the intermediate value theorem there exists at most two prices satisfying f(p) = πl; one
above and one below pm.24 We show that the lowest price is part of an equilibrium.
First, observe that if pfull is announced by both firms, then in the R&D stage we have
that Vhigh = L and xhigh = 0 (see the high candidate for equilibrium in the proof of
Proposition 1).

We now show that pfull is an equilibrium by showing that there is no profitable
deviation. Firm i will never deviate to a price pi > pfull, as this price cannot deter firm
j further (xj(pfull) = 0) and it decreases firm i’s profit flow.25 To show that there is
no profitable deviation to a price pi < pfull we start by observing that, in the price-
announcing stage, if both firms announce pfull, the first-order condition is not satisfied.
In particular, the derivative (6) is positive as26

dπi(pfull)

dpi
+
L− F
r

dπj(pfull)

dpi
>
dπi(pfull)

dpi
+
dπj(pfull)

dpi
> 0,

where in the first expression we used that Ri(pfull) = (L − F )/r. The first inequality
follows from replacing (L−F )/r > 1 by one. The second inequality follows from pfull ∈
(ps, pm), the global concavity of the monopolist problem, and observing that the second
expression is the derivative of the monopolist profit function with respect to pi.

The positive derivative at the vector of prices pfull implies that a unilateral decrease
in pi decreases Vi locally. We show that for every price pi < pfull the derivative is
positive—hence, there can never be a price p∗ < pfull such that Vi(p

∗, pfull) > L. By
contradiction, suppose that there exist a range of prices such that Vi(pi, pfull) is decreas-
ing in pi. Because for prices lower than pfull, Vi is a continuous function of pi, there must
exist a local minimum. That is, there must exist a price p such that dV (p, pfull)/dpi = 0.
We show that p cannot exist. Start by observing that xi(p, pfull) = L− Vi must be pos-
itive, as the function Vi(pi, pfull) was increasing in pi in the interval (p, pfull). Similarly,
xj(pfull, pi) is positive as the value of Vj is lower than L, as firm j is facing more price
competition (i.e., pi < pfull) and greater R&D competition (i.e., xi > 0) compared to a
situation in which pi = pfull. Consider pi = p and observe that an infinitesimal decrease
in pi does not change xi as, by construction of p, dVi(p, pfull)/dpi = 0. Firm j, however,
experiences a decrease in Vj as it faces more product market competition (it faces a
lower price by a competitor). In Lemma 3 we showed that firms values move in the same
direction, that is Ri(p) = dVi/dVj > 0 for every p. This is a contradiction, as we have
an decrease in Vj that does not lead to a decrease in Vi and thus no such p can exist. �

24When πl = πm, there only is one price satisfying f(p) = πl, which is given by p = pm. The
proof that this is an equilibrium price follows analogous steps as those in the πl < πm scenario.

25Formally, there is a jump in dVi(pi, pfull)/dpi at pi = pfull. Because xj(pi, pfull) = 0 for
pi ≥ pfull, the derivative (6) reduces to dπi(pfull)/dpi. This derivative is negative, as pfull > ps
and the problem of the firm being strictly concave.

26Observe that (5), and consequently (6), holds even when the announced prices p lead R&D
investments into a corner solution. In particular, when L = Vi(p) the envelop theorem still
holds. When L < Vi(p), investments are zero in a neighborhood of pi, which implies dx∗i /dpi = 0
guaranteeing that the second term in (5) is zero.
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Proof of Lemma 4. i) See discussion about feasibility of high and low solutions
in the proof of Proposition 1. ii) It follows from replacing the solutions Vhigh and Vlow
(see equation (13) in the proof of Proposition 1) into equation (7) and verifying the
inequalities. �

Proof of Proposition 4. The existence of the function Vlow(p) follows from the
proof of Proposition 1. The existence of plow ∈ (ps, pm) follows from Lemma 4 and
the application of the intermediate value theorem, as discussed in the text. We prove
that plow is indeed an equilibrium by showing that the second-order condition holds at
every Vlow solution in which the price vector satisfies the first-order condition (hence,
the equilibrium is unique). Then, we show that π(plow) > πs which, by Lemma 4,
immediately implies Vlow > Vna and xlow < xna.

Let p∗ be any symmetric price vector satisfying first-order condition (6). By Propo-
sition 2, p∗ > ps. Observe that, by construction, dVi(p

∗)/dpi = 0 and −dπi(p∗)/dpi =
Ri(p

∗)dπj(p
∗)/dpi. Differentiating (6) we obtain:

d2Vi(p
∗)

dp2
i

=
d2πi(p

∗)

dp2
i

+Ri(p
∗)
d2πj(p

∗)

dp2
i

+
1

(r + 2x∗(p∗))2

(
−dπi(p

∗)

dpi

)
dπj(p

∗)

dpi
. (15)

We show that Ψ(p) < 0 for every p ∈ (ps, pm) implies that at every price where equation
(6) is satisfied, an upper-bound of equation (15) is negative.

We know that d2πi(p
∗)/dp2

i < 0 because the profit function is concave. Bound
the second term in equation (15) by max{0, d2πj(p

∗)/dp2
i }. This works because if

d2πj(p
∗)/dp2

i > 0 take Ri(p
∗) = 1, if d2πj/dp

2
i < 0 take Ri(p

∗) = 0. Before bound-
ing the third (and last) term, we show that it is positive. First, by definition, r+ 2x∗ >
0. dπi(p

∗)/dpi < 0 because p∗ > ps and demand regularity condition (D). Finally,
dπj(p

∗)/dpi > 0 because dqj/dpi > 0.
The third term in equation (15) is still a function of an endogenous object, V (as

x∗ = L − V ). It is, however, increasing in V . To find an upper bound notice that Vlow
in equation (13) is increasing in π. Also, π is the maximum feasible value of π. Then, at
that value, Vlow(π) = (2L+F + r)/3. Using this value of V to bound the third term we
obtain that Ψ(p∗) is an upper-bound of (15). Thus, d2Vi(p

∗)/dp2
i < Ψ(p∗) < 0, where

the second inequality follows from the assumption that Ψ(p) < 0 for all p ∈ (ps, pm).
d2Vi(p

∗)/dp2
i < 0 implies that p∗ is a local maximum, and because this is true for every

p satisfying (6), there is no other local minimum satisfying the first-order condition.
Hence, the equilibrium is unique; i.e., p∗ = plow is the only equilibrium.
Proof of π(plow) > πs: The solution to the problem of a firm that controls the price
of all products in the case of symmetric demand functions (i.e., maxp π(p, p)) is given
by the multiproduct monopoly price, pm. This implies that, given concavity of the
monopoly problem, π(p, p) is increasing in p until the price reaches the monopoly price,
pm. Because ps < plow < pm, the result follows. �

Proof of Proposition 5. The necessity of L − F > r follows from the proof of
Proposition 1. High-deterrence equilibria are shown in Table 1. For phigh > pm (and
therefore phigh > plow) see the discussion in the text. By Lemma 1, we know Vhigh (if
it exists) is larger than Vlow. This, in conjunction with equation (4), implies xhigh <
xlow. Finally, to check that a price satisfying equation (6) is indeed a high-deterrence
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equilibrium, we need to check the second-order condition (15). We check this condition
numerically in the examples in the table. �

Proof of Proposition 6. See argument following equation (10) in the main text. �

Proof of Proposition 7. See argument in the text. �

Proof of Proposition 8. See argument in the text. �

B Demand Regularity Conditions

We assume that firm i’s maximization problem is strictly concave; that is, d2πi(p)/dp2
i <

0 for any price vector p. In addition, for every price vector such that the first-order
condition qi+dqi/dpi (pi − c) = 0 is satisfied, we assume

− dqi
dpi

>
d2qi
dp2

i

(pi − c), (A)
dqi
dpj

> − d2qi
dpjdpi

(pi − c), (B) − dqi
dpi

>
dqi
dpj

, (C)

− dqi
dpi

>
dqi
dpj

+

(
d2qi
dp2

i

+
d2qi
dpjdpi

)
(pi − c). (D)

(A) guarantees that dpi/dci < 1. (B) and (D) are required for j to not over react to i’s
price change; i.e., dpj/dpi ∈ (0, 1). Finally, (C) requires that own price effects are larger
than those of the opponent.

To illustrate the conditions for when the multiproduct monopolist’s problem has a
unique solution, define the function: F (p1, p2) ≡ π1(p1, p2) +π2(p1, p2). Let Fi represent
the derivative of F with respect to pi. We assume that F is globally concave, that is
guaranteed Fi,i < 0 and F1,1F2,2 − (F1F2)2 > 0 at any price vector. This guarantees a
unique global maximum and a unique maximum when the price of a good is exogenously
fixed.

C Discounted Expected Consumer Surplus

The discounted expected consumer surplus at time t, before the innovation has arrived,
and given a vector of price announcements, p, is given by

CS(p) =

∫ ∞
t

e−(r+λ)(s−t) (cs(p) + λcs(pl, pf )/r) ds =
rcs(p) + λcs(pl, pf )

r(r + λ)
,

where cs(p) is the consumer surplus flow at prices p, cs(pl, pf )/r is the discounted
consumer surplus after the innovation arrives, λ is the pace of innovation, and r is the
discount rate. The interpretation of CS(p) is similar to that of equation (1).
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Announcing High Prices to Deter Innovation

by Guillermo Marshall and Álvaro Parra

Supplemental Material – Not for Publication

In this appendix, we extend the model to show that the R&D deterrence effect of

price announcements exists more generally. We start by generalizing our quadratic

cost assumption. In particular, we assume that the flow cost κ(xi) is strictly

increasing, strictly convex (i.e., κ′′(x) > 0 for all x ≥ 0), and satisfies κ(0) =

κ′(0) = 0, κ′′(0) < 1, and κ′′′(x) ≥ 0 for all x ≥ 0. We, then, show that our

results extend to scenarios with n symmetric players and the duopoly case with

asymmetric firms. We also consider the case of sequential innovations and the

case of quality-enhancing innovations (as opposed to the process innovations in

our baseline model). Lastly, we discuss the case where firms face demand shocks

that incentivize firms to revise their price announcements.

D Duopoly with General R&D costs

D.1 Preliminaries

We will analyze the symmetric equilibrium of the game. Start by assuming that

the profit flow is symmetric across firms and, for the moment, exogenously given by

π ∈ [πf , πl]. Using the principle of optimality, and conditioning on the opponents’

strategy xj, we can write the R&D problem above as

rVi = max
xi≥0
{π + xi(L− Vi) + xj(F − Vi)− κ(xi)}. (16)

Differentiating the right hand side of equation (16) gives us an implicit expression

for firm i’s R&D investment,

κ′(xi) = L− Vi. (17)

As before, the investment rule equates the marginal cost of increasing the inno-

vation rate, xi, with the incremental value of an innovation, L − Vi. Due to the

strict convexity of κ, equation (17) has a unique solution and can be inverted and

written as xi = f(L− Vi), where f is a strictly increasing and concave function.
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Lemma 5. The function f(z) implicitly defined by κ′(f(z)) = z satisfies f(0) = 0

and is increasing (f ′(z) > 0 for all z ≥ 0). When κ′′′(x) > 0, f(z) is concave

f ′′(z) < 0 for all z > 0, and when κ′′′(x) = 0, f ′′(z) = 0 for all z > 0.

Proof. The first statement follows from κ′(0) = 0. The second follows from the

derivative of f(z) being equal to f ′(z) = 1/κ′′(f(z)) and the fact that κ(x) is

strictly convex (i.e., κ′′(x) ≥ 0 for all x ≥ 0). Similarly, we have that f ′′(z) =

−κ′′′(f(z))/(κ′′(f(z))3) and the results follows from the value of κ′′′(x). �

Replacing the equilibrium investment decisions of both firms back into equation

(16), and restricting attention to symmetric values among firms (Vi = Vj = V ), we

define the continuous function

φ(V, π) ≡ π + f(L− V )(L+ F − 2V )− κ(f(L− V ))− rV. (18)

The function φ(V, π) will help us characterize how prices relate to the equilibrium

value of V . Start by observing that, given a vector of (symmetric) prices p, both

firms earn the profit flow π = πi(p). For each π we can search for a candidate

solution to the value function by looking at values of V satisfying φ(V, π) = 0.

Because deterrence is costly and firms cannot be deterred beyond the point where

they choose not to invest in R&D (i.e., xj ≥ 0), no equilibrium with V > L exists.

Also, it can be easily shown that values of V < F are never candidate solutions

for economically relevant values of π. For these reasons we restrict the analysis

of φ(V, π) to values of V ∈ [F,L]. Also, for ease in exposition, we assume that

L − F ≥ r. As in the main text, L − F ≥ r is necessary for the existence of

a high deterrence equilibrium and sufficient for the existence of a full deterrence

equilibrium.

Lemma 6 (Shape of φ). (i) φ(F, π) > 0 for any π ≥ πf . (ii) φ(L, πl) = 0

and φ(L, π) < 0 for any π < πl. (iii) For any given value of π, φ′(F, π) < 0,

φ′(L, π) > 0, and φ′′(V, π) > 0 for all V ∈ (F,L).27 (iv) There exists a unique

value V ∈ (F,L), independent of π, where φ(V, π) is minimized.

Proof. (i) and (ii): Observe that φ(F, π) = π−πf+f(L−F )(L−F )−κ(f(L−F )).

Due to the convexity of κ and κ(0) = 0, we have that xκ′(x) > κ(x) for all

x > 0. Equation (17) implies κ′(f(L− F )) = (L− F ). Replacing back, we obtain

φ(F, π) = π−πf +xκ′(x)−κ(x) with x = f(L−F ). Thus, π ≥ πf is sufficient for

27The prime denotes derivatives with respect to the V dimension.
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φ(F, π) > 0. Similarly, φ(L, π) = π − πl. Thus φ(L, π) < 0 whenever π < πl and

φ(L, π) = 0 when π = πl.

(iii) Differentiating φ with respect to V we obtain: φ′(V, π) = −r−2f(L−V )+

f ′(L−V )(V −F ) and φ′′(V, π) = 3f ′(L−V )−f ′′(L−V )(V −F ). Start by observing

that this derivatives are independent of π. Also, φ′′(V, π) > 0 for V ∈ (F,L) as

f ′(x) > 0 and f ′′(x) ≤ 0 (see Lemma 5). Using φ′(V, π) we have that φ′(F, π) =

−r− 2f(L−F ) < 0. Similarly, limV→L φ
′(V, π) = −r+ (L−F ) limV→L f

′(L−V ).

Here we have two cases (see Lemma 5), if κ′′(0) = 0 then limV→L f
′(L− V ) = ∞

and φ′(L, π) > 0. If κ′′(0) ∈ (0, 1], then φ′(L, π) = −r + α(L − F ) where α > 1

and φ′(L, π) > 0 by the assumption that L− F ≥ r.

(iv) Since φ′(F, π) < 0 and φ′(L, π) > 0, the intermediate value theorem implies

that there exists a V ∈ (F,L) such that φ′(V , π) = 0. Because φ′′ > 0, V is

unique and corresponds to a minimum, which is independent of π, as φ′(V, π) is

independent of π. �

The previous lemma characterizes φ as a function of V . It tells us that for any

given value of π, φ(V, π) is U-shaped with φ′(V, π) being monotonically increasing

(see Figure 4). Due to the linearity of φ in π, a change in π only results in a

vertical shift of φ. These two facts imply that φ is uniquely minimized at V , which

is independent of π. Define π̄ to be the unique value of π satisfying φ(V , π̄) = 0.

Observe that, by construction, π̄ > πl.

Lemma 7 (Equilibrium Candidates). For π ∈ [πf , πl)∪{π̄} the equation φ(V, π) =

0 has a unique solution. For π ∈ [πl, π̄), φ(V, π) = 0 has two solutions. For π > π̄,

φ(V, π) = 0 has no solution.

Proof. Since φ(V , π̄) = 0 and φ′′(V, π) > 0, there is a unique solution when

π = π̄. Observe that φ(V , π) < 0 for π < π̄ and, by Lemma 6, that φ(F, π) > 0

for π ≥ πf . Consequently, for any π ∈ [πf , π̄), the intermediate value theorem

guarantees that there exists a solution to φ(V, π) = 0, call it Vlow, such that

Vlow ∈ (F, V ). Because φ is monotone (decreasing) in V for V ∈ [F, V ), the

Vlow solution is unique. Similarly, because φ is monotonically increasing in V for

V ∈ (V , L], there is no solution to φ(V, π) = 0 larger than V when φ(L, π) < 0 (i.e.,

π < πl) and a unique solution when φ(L, π) ≥ 0 (i.e., π ≥ πl), call it Vhigh. �

The intuition of Lemma 7 can be seen graphically in Figure 4. Start by ana-

lyzing φ(V, πl). Since φ(L, πl) = 0 and φ′(L, πl) > 0 we know that φ approaches
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Figure 4: Equilibrium Multiplicity.
Note: (i) In panel (b) π ∈ (πf , πl) and π′ ∈ (πl, π̄). (ii) Both panels depicted under the LF ≥ r

assumption. If LF < r, φ might be u-shaped (as depicted above) or decreasing in V .

zero at L from below. Also, since φ(F, πl) > 0 we know that φ(V, πl) must cross

zero at a value of V ∈ (F,L). This value is represented by Vlow in Figure 4 (Panel

A). Moreover, since a lower π implies a downward parallel shift of φ, and because

φ(F, π) > 0 for any π ≥ πf , a solution to the left of V always exists for this profit

range but no solution to the right of V exists (see Vlow for π and π′ in Figure 4

(Panel B)). Similarly, when π ∈ [πl, π̄) the solution Vlow still exists, but now a new

solution to the right of V , denoted by Vhigh, also exists (see φ(V, π′) in Figure 4

(Panel B)). When π = π̄, V is the only solution. Finally, when π > π̄, no solution

exists.

Since φ may never cross the horizontal axis for a sufficiently high profit level,

we henceforth assume that πm ≤ π̄ in order to guarantee the existence of Vi(p).

To see why this is sufficient, observe that πm is the maximum profit flow that can

be attained in a symmetric equilibrium. Therefore πm ≤ π̄ guarantees that Vi(p)

is well defined for any relevant vector of symmetric prices.28

The two solutions of φ have different qualitative features. For instance, while

Vlow is increasing in π, the solution Vhigh is decreasing. By implicitly differentiating

φ(V, π) = 0 with respect to Vj, we can define the ratio

R(p) ≡ dVi
dVj

=
f ′(L− V (p))(V (p)− F )

r + 2f(L− V (p)))
> 0. (19)

R(p) captures how a solution Vi(p) changes with an increase in the opponents’

28Note, however, that πm ≤ π̄ is a sufficient condition. It is possible to find model parameters
for which the unique equilibrium price vector under price announcements p∗ satisfies π(p∗) < π̄—
so that V (p∗) is well defined—but π̄ < πm.
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value. As we can observe, firms’ values are complements, since an increase in firm

j’s value increases firm i’s value by R(p). R(p) will play an important role when

we characterize the equilibrium of the pricing game, as it measures how increasing

firm j’s value benefits firm i (i.e., the payoff pass-through of increasing the rival’s

value).

Lemma 8 (Properties of High and Low Equilibria). The equilibrium value in every

solution Vlow is lower than the value in any solution Vhigh. In any solution Vlow,

R(p) ∈ (0, 1). In any solution Vhigh, R(p) > 1. Vlow(π) is increasing in π, while

Vhigh(π) is decreasing.

Proof. From the proof of Lemma 7 we know that Vlow < V < Vhigh, which

proves the first claim. For the second claim simply observe that φ′(V, π) < 0 (or

φ′(V, π) = 0 or φ′(V, π) > 0) is equivalent to R(p) < 1 (or R(p) = 1 or R(p) > 1,

respectively) after manipulating the inequality and using the definition of R(p).

Since R(p) > 0, φ′(V , π) = 0 and φ′′(V, π) > 0, it follows that R(p) ∈ (0, 1) at Vlow

and R(p) > 1 at Vhigh. For the last statement, at any solution V a ∈ {Vlow, Vhigh}
of φ(V, π), observe that dV a/dπ = −φ′(V a, π)−1. The result follows. �

Because the equilibrium value in every solution Vlow is lower than the value

in any solution Vhigh, and because larger V ’s are associated with lower R&D in-

vestments levels (see equation (4)), we refer to a Vlow solution as part of a low

deterrence equilibrium. Similarly, we refer to Vhigh solutions as part of a high

deterrence equilibrium. Recall from Lemma 7 that the solution Vhigh only exists

when π ≥ πl. Since in equilibrium π(p) ≤ πm—i.e., only profit flows less than

the monopoly profits are attainable—we know that Vhigh solutions are not feasible

when the innovation is radical (πl > πm). That is, a high deterrence equilibrium

may only exist for incremental innovations (πl ≤ πm).

Lemma 9 (Feasibility of Equilibria). Under radical innovations (i.e., πl > πm)

only the Vlow solution is a candidate for equilibrium. Under incremental innova-

tions (i.e., πm ≥ πl), both solutions are candidates.

D.2 No Price Announcements

In the absence of price announcements, it is not hard to see that the value of

participating in the patent race is still given by (1). The first-order conditions are

now given by
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κ′(xi) = L− Vi,
∂πi(pi, pj)

∂pi
= 0. (20)

As it can be seen, the only change with respect to the main text occurs in the

first-order condition for R&D investments, which now incorporates the general

cost structure. The statement about existence and uniqueness of an equilibrium

with no announcements extends without modification.

Proposition 9 (Equilibrium with No Announcements). There is a unique sym-

metric Markov perfect equilibrium, (pna, xna, Vna), that solves equation (1) and

conditions (20). In equilibrium, pna = ps, xna > 0, and Vna ∈ (F,L).

Proof. The first-order condition for price in (20) and the demand regularity

conditions imply that ps = (ps, ps) is the unique equilibrium price vector and

πs = πi(ps) is the equilibrium profit earned by the firms. Using the condition (20)

for R&D investments, we can construct φ(V, πs) which, by Lemma 7 single crosses

zero at a value V na ∈ (F,L) since πs ∈ (πf , πl) (see Lemma 1). Lastly, strict

convexity of κ(x) guarantees that xna is the unique solution to equation (20) given

Vna and L. �

D.3 Price Announcements

We now consider the case of symmetric equilibria with public price announcements.

The timing of the game remains unchanged. At the beginning of the race, firms

make simultaneous public price announcements, and they (credibly) commit to

these prices until the next innovation arrives. Upon observing the announced

prices, firms then choose how much to invest in R&D in every period.

Solving by backward induction, we know that for a given pair of prices p =

(pi, pj) firms choose investments strategies given by x∗i (p) = L − Vi(p). Taking

these strategies as given, in the price announcement stage firms solve maxpi Vi(p),

which deliver the first-order condition

dπi(p)

dpi
+

dxj
dpi

(F − Vi(p))︸ ︷︷ ︸
R&D Deterrence Effect>0

=
dπi(p)

dpi
+R(p)

dπj(p)

dpi
= 0 (21)

Where the equality can be shown using the analogous version to Lemma 3. These

equations have the same interpretation as the ones given in the main text.
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Proposition 10 (Full Deterrence Equilibrium). Assume L−F ≥ r, when innova-

tions are incremental (i.e., πl ≤ πm), there exists a full deterrence equilibrium, in

which pfull = min{p : π(p, p) = πl}, xfull = 0, and Vfull = L. In this equilibrium,

firms completely deter rivals from investing in R&D by announcing prices that are

lower than the multiproduct monopoly price (pfull ≤ pm) but higher than the static

oligopoly price (pfull > ps).

The intuition and proof of the result is identical to that of Proposition 3. The

only difference in the proofs is that now R(pfull) = α(L− F )/r with α = f ′(0) ≡
κ(0)−1 ≥ 1 (see Lemma 5). This implies that R(pfull) > 1, and consequently

the existence of a full deterrence equilibrium, can be guaranteed by a weaker

assumption than (L− F )/r > 1.

To establish the existence and uniqueness of a low deterrence equilibrium define

the following function,

Ψ(p) =
∂2πi(p)

∂p2
i

+ max

{
0,
∂2πj(p)

∂p2
i

}
− Λ

∂πi(p)

∂pi

∂πj(p)

∂pi
, (22)

where p = (p, p),

Λ =
1

K2

(
f ′(L− V)2 − f ′′(L− V)K

f ′(L− V)

)
> 0,

K = r + 2f(L − V) > 0 and V is defined in Lemma 6. For the sufficiency proof

we also assume that κ(x) = xγ/γ with γ ≥ 2 (that is f(z) = z
1

γ−1 ). Observe that

Ψ(p) is a function of only fundamentals of the game. Assuming that Ψ(p) < 0 for

all p ∈ (ps, pm) is sufficient to guarantee that there exists a unique low deterrence

equilibrium.

Proposition 11 (Low Deterrence Equilibrium). Assume Ψ(p) < 0 for all p ∈
(ps, pm). There exists a unique low deterrence symmetric Markov perfect equilib-

rium, (plow, xlow, Vlow). In this equilibrium, firms deter their rivals’ R&D (xlow <

xna) by announcing higher prices (plow ∈ (pna, pm)) and they earn greater profits

(Vlow > Vna) relative to the case without price announcements.

Proof. The existence of the function Vlow(p) follows from Lemmas 6 and 7. The

existence of plow ∈ (ps, pm) follows from Lemma 4 and the application of the in-

termediate value theorem, by an analogous argument as the one given in the main

text. For completeness and to better show the differences between a high and low
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deterrence equilibrium, we present a complete derivation of the first order con-

ditions. Then, we prove that plow is indeed an equilibrium by showing that the

second-order condition holds at every vector of prices which the first-order condi-

tion holds (hence, the equilibrium is unique). Then, we show that π(plow) > πs

which, by Lemma 4, immediately implies Vlow > Vna and xlow < xna.

First-order condition: Using implicit differentiation, the derivative of Vi with re-

spect to pi is

dVi
dpi

=

dπi
dpi

+ f ′ (L− Vj) dVj
dpi

(Vi − F )

r + f (L− Vj) + f (L− Vi)
,

where
dVj
dpi

=

dπj
dpi

+ f ′ (L− Vi) dVi
dpi

(Vj − F )

r + f (L− Vj) + f (L− Vi)
.

Observe that at the optimum dVi/dpi = 0. Using this condition in dVj/dpi and

replacing back into dVi/dpi delivers equation (21). More generally (i.e., not neces-

sarily at the optimum), we obtain

dVi
dpi

=
1

K

dπi
dpi

+Ri
dπj
dpi

(1−RiRj)
(23)

where K = r+f(L−Vi)+f(L−Vj) > 0 and Ri = f ′(L−Vj)(Vi−F )/K > 0. The

expression above captures how in a high deterrence equilibrium the derivative of Vi

with respect to pi has the opposite sign of the same derivative in a low deterrence

equilibrium, since Ri > 1 for i ∈ {1, 2} in any high deterrence equilibrium.

Second-order condition: Differentiating (23) with respect to pi and using that in

equilibrium −dπi/dpi = Ridπj/dpi, we obtain:

d2Vi
dp2

i

=

d2πi
dp2i

+Ri
d2πj
dp2i
− 1

K2

(
f ′(L−Vj)2−f ′′(L−Vj)K

f ′(L−Vj)

)
dπi
dpi

dπj
dpi

K (1−RiRj)
. (24)

The denominator is positive in a low deterrence equilibrium whereas it is negative

in a high deterrence equilibrium (Lemma 4). We show that Ψ(p) < 0 for every

p ∈ (ps, pm) implies that at every price where (21) is satisfied, an upper-bound of

(24) is negative.

Because the denominator is positive, we ignore it to determine the sign of

d2Vi/dp
2
i . We know that d2πi/dp

2
i < 0 because of demand regularity condition

(A), which guarantees uniqueness of the static oligopoly game. To bound the

second term from above, we use max{0, d2πj/dp
2
i } (if d2πj/dp

2
i > 0 take Ri = 1,
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if d2πj/dp
2
i < 0 take Ri = 0). Before bounding the third (and last) term, we

show that it is positive (i.e., the negative 1 multiplies a negative term). dπi/dpi <

0 because every price that satisfies (21) is greater than ps, and we have that

dπi(ps)/dpi = 0 and d2πi/dp
2
i < 0. dπj/dpi > 0 because dqj/dpi > 0. Finally the

term in parenthesis is positive by Lemma 5. We bound the term in parenthesis

using the parametric specification of the cost function, κ(x) = xγ/γ, which implies

f(z) = z1/(γ−1), and

1

K2

(
f ′ (L− V )2 − f ′′ (L− V )K

f ′ (L− V )

)
=

(γ − 1)−1

(r + 2f(L− V ))2

(
1

(L− V )
γ−2
γ−1

+
γ − 2

L− V

)
.

The expression above is increasing in V . Because every low deterrence equi-

librium satisfies Vlow ≤ V, we use V to bound the expression above. Thus,

d2Vi/dp
2
i < Ψ(plow)/(K(1− RiRj)) < 0, where the second inequality follows from

the assumption that Ψ(p) < 0 for all p ∈ (ps, pm). d2Vi/dp
2
i < 0 implies that plow

is a local maximum, and because this is true for every p satisfying (6), there is

no local minimum satisfying the first order condition. Hence, the equilibrium is

unique.

Proof of π(plow) > πs: The solution to the problem of a firm that controls the price

of all products in the case of symmetric demand functions (i.e., maxp π(p, p)) is

given by the multiproduct monopoly price, pm. This implies that π(p, p) is increas-

ing in p until the price reaches the monopoly price, pm. Because ps < plow < pm,

the result follows. �

As in the main text, we can construct examples of high-deterrence equilibria

satisfying the assumptions of the model, but its existence cannot be guaranteed

within the assumptions of the model.

E Other Extensions

In this section we present various extensions of the model to show the robustness

of the results.

E.1 n Symmetric Competitors

Consider a industry served by n symmetric firms. As before, let πl and πf represent

the profit flow obtained by the innovating firm and the non-successful followers
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after the innovation occurred. Likewise, let L = πl/r and F = πf/r represent the

discounted values of being the technology leader and follower after the innovation

arrives.

Vi(p) represents the value of firm i at time t before any firm has successfully

innovated as a function of the vector of Markov strategies p,

rVi(p) = max
xi

πi(p) + xi(L− Vi(p)) +
∑
j 6=i

xj(F − Vi(p)))− κ(xi),

where Vi(p) now captures that an invention by any of the n − 1 rivals makes

firm i become a follower. Firm i’s first-order condition with respect to the R&D

investment is given by equation (4).

Firm i chooses its price announcements by maximizing Vi(p) given beliefs about

its rivals’ strategies. The first-order condition with respect to price is equivalent

to

dVi
dpi

= 0⇔ dπi(p)

dpi
−
∑
j 6=i

dxj
dpi

(Vi(p)− F )︸ ︷︷ ︸
R&D Deterrence Effect

=
dπi(p)

dpi
+R(p)

∑
j 6=i

dπj
dpi︸ ︷︷ ︸

> 0

= 0,

where

R(p) =
f ′(L− V (p))(V (p)− F )

r + nf(L− V (p)))− (n− 2)f ′(L− V (p))(V (p)− F )
> 0.

As before, firm i takes into consideration how its price will impact its product

market profit as well as the R&D investment of each of its rivals. It is possible

to show that R(p) ∈ (0, 1) in any low deterrence equilibrium. Thus, the existence

of a low deterrence equilibrium with prices satisfying plow ∈ (ps, pm) follows from

analogous arguments to those presented in Proposition 4.

E.2 Asymmetric Firms

Consider an asymmetric duopoly where firm 1 is investing in R&D to increase its

cost advantage (i.e., lower its marginal cost from βc to β2c), and firm 2 is investing

to match firm 1’s marginal cost (i.e., lower its marginal cost from c to βc). Once

one of the two firms succeeds, the industry reaches maturity and the firms no

longer invest in R&D. The firms’ post-innovation values differ depending on which

firm successfully innovates. If firm i innovates, the values are given by Li and Fi,

x



with L1 > L2 = F1 > F2.29

Let Vi(p) represent the value of firm i at time t before any firm has successfully

innovated as a function of the firms’ Markov strategies,

rVi(p) = max
xi

πi(p) + xi(Li − Vi(p)) + xj(Fj − Vi(p))− κ(xi),

where π1(p) = (p1 − βc)q1(p) and π2(p) = (p2 − c)q2(p). Firm i’s first-order

condition with respect to the R&D investment is given by κ′(xi) = Li − Vi(p).

The price announcements are chosen by maximizing Vi(p) given beliefs about

pj, and must satisfy

dVi
dpi

= 0⇔ dπi(p)

dpi
−dxj
dpi

(Vi(p)− Fi)︸ ︷︷ ︸
R&D Deterrence Effect

=
dπi(p)

dpi
+Ri(p)

dπj
dpi︸ ︷︷ ︸

> 0

= 0,

with

Ri(p) =
f ′(L− Vj(p))(Vi(p)− F )

r + f(L− Vi(p))) + f(L− Vj(p)))
> 0.

Arguments analogous to those in Proposition 4 establish existence of a low deter-

rence equilibrium with the properties discussed in Section 4.

E.3 Sequential Innovations

We next use the analysis above to argue that the existence of the R&D deterrence

effect extends to scenarios where firms compete to develop a sequence of new

technologies. Consider the case where two symmetric firms compete to develop

a sequence of two technologies.30 Each new technology reduces a firm’s marginal

cost by a factor of β. Once the two technologies have been invented, the industry

reaches maturity, and the firms no longer invest in R&D.

The analysis of the game after the first technology has been invented is equiva-

lent to the analysis in Section E.2, where we studied the asymmetric case where one

of the firms has a cost advantage of magnitude β. The analysis of the game before

the first technology has been invented is equivalent to the symmetric analysis in

Section 4 when replacing L and F for V1 and V2, respectively, and where V1 and V2

are the pre-innovation equilibrium values in Section E.2. Because the R&D deter-

29These inequalities follow from arguments analogous to those in Lemma 1.
30The argument provided here extends to the case of k innovations. We consider the case of

two innovations for ease of exposition.
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rence effect exists in both of these versions of the model, it follows that the R&D

deterrence effect and its properties extend to the case of sequential innovations.

E.4 Quality-Enhancing Innovations

In the previous sections we focused on cost-saving innovations. Our results, how-

ever, also apply to markets in which firms compete in developing quality-enhancing

innovations.

To illustrate this, let θ be a vector describing the (single-dimensional) quality

of each product, and let qi(p, θ) be the demand of firm i given the price vector p

and the vector of product qualities θ. In addition to the assumptions discussed

in Section 2, we assume that products are substitutes in quality, that is, qi(p, θ)

strictly increases in θi, but strictly decreases in θj. This assumption is quite general

and includes a wide class of discrete-choice demand models (e.g., logit model).31

In this environment with substitutes goods, it is not hard to verify that an

increase in the quality of product i benefits firm i and makes every rival of firm

i worse off. Consequently, pre and post-innovation profits satisfy Lemma 1 (πf <

πs < πl). This post-innovation asymmetry between market leader and market

follower generates the same incentives to deter R&D as in the case of cost-saving

innovations. Because the analysis in Section 4 only relied on the profit ordering in

Lemma 1, the innovation deterrence results extend to this environment.

E.5 Demand Shifters and Revised Price Announcements

In the baseline model, we assume that firms make simultaneous public price an-

nouncements at the beginning of the game, and they (credibly) commit to these

prices until the next innovation arrives. In our baseline model, price announce-

ments are not revised prior to the discovery of the next innovation because this

period presents no changes to state variables that that would incentivize a firm to

revise its price. In this extension, we allow for changes to state variables prior to

the arrival of the next innovation (e.g., demand shocks), which lead to revised price

announcements. This extension is empirically relevant—e.g., Amazon revised its

price for the Amazon Fire smartphone because of disappointing sales—and illus-

trates that our results do not depend on a price commitment that lasts until the

31This assumption, however, does exclude cases where an innovation increases the desirability
of every product in the market (e.g., improved industry standard).
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next innovation arrives.32 That is, the same results obtain if firms make a sequence

of short-term price announcements over time.

To make this argument, we consider a version of our baseline model where

the industry may face a permanent demand shock. We assume that the demand

shock arrives at Poisson rate µ, and it may arrive before or after the arrival of an

innovation. Because the demand shock impacts profits, firms have incentives to

revise their price announcements when faced with the demand shock.

Let L and F represent the discounted values of being the technology leader and

follower after the innovation arrives, and LS and F S the discounted values once

the demand shock impacts the industry,

L =
πl + µLS

r + µ
, F =

πf + µF S

r + µ
, LS =

πSl
r
, F S =

πSf
r
,

where πj and πSj (j ∈ {f, l}) are the profit flows with and without the demand

shock.

Let Vi(p) and V S
i (p) represent the value of firm i at time t before any firm

has successfully innovated as a function of both the firms’ Markov strategies and

whether the demand shock has arrived,

Vi(p) = max
xi

πi(p) + xiLi + xjFj + µV S − κ(xi)

r + xi + xj + µ
,

V S
i (p) = max

xSi

πSi (p) + xSi L
S
i + xSj F

S
j − κ(xSi )

r + xSi + xSj
,

where V S = maxpi V
S
i (p).

The price announcements are chosen by maximizing Vi(p) and V S
i (p) given

beliefs about pj, and must satisfy

dVi
dpi

= 0⇔ dπi(p)

dpi
−dxj
dpi

(Vi(p)− F )︸ ︷︷ ︸
R&D Deterrence Effect

=
dπi(p)

dpi
+Ri(p)

dπj
dpi︸ ︷︷ ︸

> 0

= 0,

32See, for instance, https://www.businessinsider.com/

amazon-fire-phone-price-drop-2014-11.
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and dV S
i /dpi = 0⇔

dπSi (p)

dpi
−
dxSj
dpi

(V S
i (p)− F S)︸ ︷︷ ︸

R&D Deterrence Effect

=
dπSi (p)

dpi
+RS

i (p)
dπSj
dpi︸ ︷︷ ︸

> 0

= 0,

with

R(p) =
f ′(L− V (p))(V (p)− F )

r + 2f(L− V (p)) + µ
> 0

and

RS(p) =
f ′(LS − V S(p))(V S(p)− F S)

r + 2f(LS − V S(p))
> 0.

The existence of a low deterrence equilibrium, with the properties discussed in

Section 4, follows from arguments analogous to those in Proposition 4.
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