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Abstract

Online contests have become a prominent form of innovation procurement. Con-
test platforms often display a real-time public leaderboard to provide performance
feedback. The impact of information disclosure on players’ decisions is theoreti-
cally ambiguous: some players may get discouraged and quit, while others may
decide to keep working to remain competitive. We empirically investigate the
impact of a public leaderboard on contest outcomes using two complementary
approaches. First, we compare the equilibria with and without a leaderboard
using a dynamic model that we estimate using observational data. Second, we
present experimental evidence from student competitions. We find that a real-
time public leaderboard improves competition outcomes on average.
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1 Introduction

Online competitions have become a valuable resource for government agencies and
firms to procure innovations. For instance, U.S. government agencies have sponsored
over 1,000 competitions that have awarded over $250 million in prizes for software,
ideas, or designs through the website www.challenge.gov.1 In the UK, the website
www.datasciencechallenge.org was created to “drive innovation that will help to keep
the UK safe and prosperous in the future.” Firms increasingly sponsor competitions
on online platforms.2 One important feature in the design of these platforms is the
choice of information disclosure. Some platforms do not disclose information to partic-
ipants, while others display a real-time public leaderboard with information about the
performance of all participants.

Theoretically, displaying a real-time public leaderboard has ambiguous effects on contest
outcomes in a dynamic setting, which motivates our empirical analysis. Observing
the competition unfolding in real time may discourage some players, but it may also
inform other players that more work is required to remain competitive. In contrast,
without a public leaderboard, a player must decide whether to continue working or
to exit the competition without observing the performance of her rivals. Players do
not get discouraged by the realized performance of their rivals without a leaderboard,
but the lack of information about their rivals’ performance creates uncertainty in their
calculation of how much work is required to remain competitive.

Our contribution is to investigate the impact of information disclosure, in the form of
a real-time public leaderboard, on contest outcomes. Our setting is Kaggle,3 an online
platform that hosts prediction contests, i.e., competitions where the winner is the player
with the most accurate prediction of some random variable.4 Kaggle competitions
feature a real-time public leaderboard reporting scores, computed using an objective
scoring rule, for all submissions during the competition.

1E.g., DARPA sponsored a $500,000 competition to accurately predict cases of chikungunya virus:
http://www.darpa.mil/news-events/2015-05-27 (Visited on April, 2019).

2Examples include CrowdAnalytix, Tunedit, InnoCentive, Topcoder, HackerRank, and Kaggle.
3https://www.kaggle.com/
4For instance, IEEE sponsored a $60,000 contest to diagnose schizophrenia; The National Data

Science Bowl sponsored a $175,000 contest to identify plankton species from multiple images.
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In our analysis, we use two complementary approaches. First, we estimate a dynamic
model using observational data from Kaggle competitions, and we use the model es-
timates to compare the equilibria with and without a public leaderboard. Second, we
run a randomized control trial on Kaggle to provide an answer that is independent of
our modeling assumptions.

Our continuous-time model captures relevant features of Kaggle competitions. Players
can submit multiple solutions but they work on at most one submission at a time.
The score of each submission is a random variable drawn from some distribution. A
player’s type determines the distribution from which scores are drawn. After entering
the contest, a player draws a cost from a distribution, which represents the cost of
making a new submission. The player then decides to make a new submission or
to exit the competition. To make this decision, the player compares the expected
payoff of a new submission minus its cost versus the payoff of reaching the end of
the competition with her current set of submissions. The player internalizes that her
scores may influence other players’ decisions through the information released in the
public leaderboard. That is, the player understands that achieving a high score may
discourage players in what remains of the competition. The player is forward looking
in that she takes into account that she and other players may play again in the future.
If the player makes a new submission, then she works on that submission (and only
that submission) for a random amount of time. When the submission is completed it
is immediately evaluated and its score is posted on the public leaderboard.5 At this
point, and after observing the current state of the public leaderboard, the player draws
a new cost and again decides to make a new submission or to quit.

We use data from 57 large Kaggle competitions to estimate the primitives of our model,
which we do using an estimator based on conditional choice probabilities (CCPs) (Hotz
and Miller, 1993; Hotz et al., 1994). While a full-solution method where the econo-
metrician finds the equilibrium of the dynamic game with a real-time leaderboard for
every trial vector of parameters is in principle possible, the high dimensionality of the
state space makes this approach computationally infeasible. In our approach, we first

5The distributions of random variables for submission costs, scores, and submission completion
times are common knowledge. We do not model the choice of keeping a submission secret. As we
explain in Section 2, the evidence does not indicate strategic behavior in the timing of submissions.
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estimate the CCPs using data on decisions as well as data on the state variables faced
by the players at the moment of making those decisions. For every observation in our
estimation sample, we then simulate the expected payoffs associated to each action in
the choice set (i.e., make a new submission or quit the competition) given the state
variables faced by the player. In this step, we use the estimates of the CCPs to capture
the player’s beliefs about how all players would behave in what remains of the compe-
tition in response to the player’s action. Lastly, we write a likelihood function based
on these expected payoffs, and estimate the parameters using a maximum likelihood
estimator.

We recompute the equilibrium of the game in the counterfactual scenario where the
leaderboard is not displayed. The equilibrium of this game is the solution of an optimal
stopping time for each player (similar to Taylor, 1995). We study the impact of the
leaderboard on contest outcomes by comparing several outcomes across the equilibria
with and without a leaderboard: the total number of submissions, the number of sub-
missions by player type, and the maximum score. We find that a public leaderboard
has an economically significant and positive effect on both the number and the quality
of the submissions. With a public leaderboard, the number of submissions increases
by 21 percent on average, which is explained mostly by an increase in the number of
submissions by high-type players. Consistent with this finding, the maximum score on
average increases by 1.7 percent with a leaderboard.

The impact of displaying a real-time leaderboard on contest outcomes is heterogeneous
across different competitions, depending on the primitives of each competition. In line
with theoretical results, we find that the cost of making a new submission relative to
the prize (the cost-to-prize ratio) and the variance of the distribution of scores of high-
type players are positively correlated with the difference in the number of submissions
with and without a leaderboard. First, when the cost-to-prize ratio is high, the cost
of erring on the side of staying in the contest for too long is high, so players with no
information stop playing too early. Second, a large variance in the distribution of scores
of high-type players changes the competition leader more frequently, and we show that
players are on average encouraged by a real-time public leaderboard in this case. This
suggests that a contest designer would benefit from displaying a public leaderboard in
competitions where there is a significant variation in players’ scores—e.g., when there
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are many different approaches to solving a problem—or where new submissions are
costly relative to the prize.

Finally, we use a randomized control trial to provide a complementary answer to the
question of how performance feedback impacts contest outcomes. To this end, we
created and hosted 44 student competitions on Kaggle.6 Half of the competitions were
randomly assigned to the control group (i.e., no public leaderboard) and the other half
were assigned to the treatment group (i.e., public leaderboard), with competitions being
otherwise equal. The experimental results show that displaying a public leaderboard has
a significant and positive effect on both the number of submissions and the maximum
score. These “model free” results provide further evidence that a public leaderboard
improves competition outcomes on average.

1.1 Related Literature

Contests are a widely used open-innovation mechanism (Chesbrough et al., 2006). They
attract talented individuals with different backgrounds (Jeppesen and Lakhani, 2010;
Lakhani et al., 2013) and procure a diverse set of solutions (Terwiesch and Xu, 2008).

An extensive literature on static contests has focused on design features such as the
number and allocation of prizes, and the number of participants. Studies on the opti-
mal allocation of prizes include the work of Lazear and Rosen (1979), Taylor (1995),
Moldovanu and Sela (2001), Che and Gale (2003), Cohen et al. (2008), Sisak (2009), Ol-
szewski and Siegel (2015), Kireyev (2016), Xiao (2016), Strack (2016), and Balafoutas
et al. (2017). This literature, surveyed by Sisak (2009), has found that the convexity of
the cost of effort plays an important role in determining the optimal allocation of prizes.
Taylor (1995) and Fullerton and McAfee (1999), among others, show that restricting
the number of competitors in winner-takes-all tournaments increases the equilibrium
level of effort. Intuitively, players have less incentives to exert costly effort when they
face many competitors, because they have a smaller chance of winning.

The role of information disclosure in dynamic settings has only recently been explored.
Rieck (2010) studies a contest where players pay a cost to draw scores from a distribution

6All of the participants were students at the University of Illinois at Urbana-Champaign.
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and compares participation and the maximum score with and without a leaderboard.
The main finding is that the effect of a leaderboard on contest outcomes is ambiguous,
and it depends on the primitives of the contest such as costs and the distribution of
scores. In a different setting, Aoyagi (2010) compares the provision of effort by agents
in a dynamic tournament under full disclosure of information (i.e., players observe
their relative position) versus no information disclosure. Ederer (2010) adds private
information to this setting whereas Klein and Schmutzler (2016) add different forms
of performance evaluation. Goltsman and Mukherjee (2011) study when to disclose
workers’ performance. Other recent theoretical articles studying dynamic contest design
include Halac et al. (2014), Bimpikis et al. (2014), Benkert and Letina (2016), and
Hinnosaar (2017).7

A growing empirical literature on contests includes Boudreau et al. (2011), Genakos
and Pagliero (2012), Takahashi (2015), Boudreau et al. (2016), Bhattacharya (2016)
and Zivin and Lyons (2018). Gross (2015) studies how the number of participants
changes the incentives for creating novel solutions versus marginally better ones. In a
static environment, Kireyev (2016) uses an empirical model to study how elements of
contest design affect participation decisions and the quality of outcomes. In his model,
players decide up-front how many submissions to send to the contest, i.e., decisions are
not based on dynamic information revelation as in our setting. Huang et al. (2014)
estimates a dynamic structural model to study individual behavior and outcomes in a
platform where individuals can contribute ideas, some of which will be implemented at
the end of the contest. Their paper focuses on learning the value of ideas rather than
on contest design. Finally, Gross (2017) studies how performance feedback impacts
participation in design contests, but the analysis abstracts away from the dynamics of
competition. Stopping decisions are based on each players’ past outcomes and not on a
dynamic leaderboard. This is in contrast with our paper, where we allow for sequential
participation and dynamic feedback based on other competitors’ performance.

The “gamification” literature—which studies the application of game-design elements
(e.g., leaderboards) to areas such as education, marketing, health, or labor markets,

7Design levers other than prizes, limited entry, or feedback have been studied, for instance by
Megidish and Sela (2013) (requiring a minimal level of effort to participate) and by Moldovanu and
Sela (2006) (splitting competitors into two divisions).
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among others—is also related. Most of these articles conduct experiments. Landers and
Landers (2014) show that adding a leaderboard improves “time-on-task” in a education
setting. Landers et al. (2017) show that a leaderboard motivates agents to set more
ambitious goals. Athanasopoulos and Hyndman (2011) find that a leaderboard improves
forecasting accuracy.

The literature on effort provision for non-pecuniary motives is also related. Lerner and
Tirole (2002) argue that high-quality contributions are a signal of ability to potential
employers. Moldovanu et al. (2007) studies a setting where status motivates partici-
pation. Finally, it is possible to establish a parallel between a contest and an auction.
While there is a well-established empirical literature on bidding behavior in auctions
(Hendricks and Porter, 1988; Li et al., 2002; Bajari and Hortacsu, 2003, among others),
there are only a few papers analyzing dynamic behavior in auctions (see, e.g., Barkley
et al., 2019; Coey et al., 2019), which are closer to our work.

2 Background, Data, and Motivating Facts

2.1 Background and Data

We use publicly available information on 57 featured competitions hosted by Kaggle.8

These competitions offered a monetary prize that ranged between $1,000 and $500,000
(and averaged $30,489), received at least 1,000 submissions from an average of 894 teams
per contest, and evaluated submissions according to a well-defined rule. A partial list
of competition characteristics are summarized in Table 1 (see Table A.1 in the Online
Appendix for the full list).

Participants of Kaggle competitions have access to a training and a test dataset. An
observation in the training dataset includes both an outcome variable and covariates;
while the test dataset only includes covariates. A valid submission in a contest must
include an outcome variable prediction for each observation in the test dataset. To
avoid overfitting, Kaggle partitions the test dataset into two subsets and does not

8https://www.kaggle.com/kaggle/meta-kaggle
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Name of the Total Number of Teams Start Date Deadline
Competition Reward Submissions
Heritage Health Prize 500,000 23,421 1,221 04/04/2011 04/04/2013
Allstate Purchase Prediction Challenge 50,000 24,526 1,568 02/18/2014 05/19/2014
Higgs Boson Machine Learning Challenge 13,000 35,772 1,785 05/12/2014 09/15/2014
Acquire Valued Shoppers Challenge 30,000 25,138 952 04/10/2014 07/14/2014
Liberty Mutual Group - Fire Peril Loss Cost 25,000 14,751 634 07/08/2014 09/02/2014
Driver Telematics Analysis 30,000 36,065 1,528 12/15/2014 03/16/2015
Crowdflower Search Results Relevance 20,000 23,237 1,326 05/11/2015 07/06/2015
Caterpillar Tube Pricing 30,000 23,834 1,187 06/29/2015 08/31/2015
Liberty Mutual Group: Property Inspection Prediction 25,000 40,594 2,054 07/06/2015 08/28/2015
Coupon Purchase Prediction 50,000 18,477 1,076 07/16/2015 09/30/2015
Springleaf Marketing Response 100,000 34,861 1,914 08/14/2015 10/19/2015
Homesite Quote Conversion 20,000 28,571 1,334 11/09/2015 02/08/2016
Prudential Life Insurance Assessment 30,000 42,336 2,452 11/23/2015 02/15/2016
Santander Customer Satisfaction 60,000 93,031 5,117 03/02/2016 05/02/2016
Expedia Hotel Recommendations 25,000 22,709 1,974 04/15/2016 06/10/2016

Table 1: Summary of the Competitions in the Data (Partial List)

Note: The table only considers submissions that received a score. The total reward is measured in US
dollars at the moment of the competition. See Table A.1 in the Online Appendix for the complete list
of competitions.

inform participants which observations correspond to each subset. The first subset is
used to generate a public score that is posted in real-time on a public leaderboard. The
second subset is used to generate a private score that is never made public during the
contest—it is revealed only at the end of the competition. For example, in the Heritage
Health Prize, the test dataset was divided into a 30 percent subsample to compute
the public scores and a 70 percent subsample to compute the private scores. Kaggle
discloses the percentage of the data in each subsample, but players do not know which
observations belong to each subsample, which creates imperfect correlation between
public and private scores. We used competitions that used between 10 and 90 percent
of the test dataset to generate public scores.

All the competitions we consider display a real-time public leaderboard which contains
the public score of every submission made up to that point in time. Players’ final
standings, however, are calculated using the private scores, so the final standings may
be different than the final standings displayed in the public leaderboard.9 Hence, the

9The coefficient of correlation between public and private scores in our sample is 0.99. In about
79 percent of the competitions, the winner finished the competition within the top three of the final

8



public leaderboard provides informative, yet noisy, signals on the performance of all
players throughout the contest.

An observation in our dataset is a submission in a contest. For each contest, we observe
information on all submissions including when they were made (time of submission),
who made them (team identity), and their score (public and private scores). These
data allow us to reconstruct both the public and private leaderboard at every instant
of time.

2.2 Motivating Facts

Our modeling choices are guided by a series of empirical facts. To make comparisons
across contests, we normalize the contest length and the total prize to one, and we
standardize public and private scores.

In each competition, lower scores are attributed to participants that may be not trying
to win it but instead are participating for non-pecuniary motives. We are interested in
modeling competitive players—those who are affected by the design of the competition
and are trying to win. For this purpose, we group teams into “competitive” and “non-
competitive” categories. Competitive teams are defined as teams that obtain scores
above the 75th percentile of the score distribution in a competition.10 Table 2 presents
summary statistics at the competition level, team level, and submission level.

Table 2 (Panel A) presents summary statistics at the competition level. On average,
there are 893.7 teams per competition, the reward is about $30,489, and competitions
last for about 81.69 days. Panels B and C in Table 2 show summary statistics for all
teams and competitive teams, respectively. About 25 percent of the teams are compet-
itive and these teams send an average of 40 submissions per competition, which exceeds
the overall sample average of 16.5 submissions per team. The number of members in a
competitive team is on average 1.2 members, which is not significantly different than
the average number of team members when considering the full sample of teams.

public leaderboard (see Table A.2 in the Online Appendix).
10Table A.3 in the Online Appendix shows that competitive teams are more experienced: 63 percent

participate in more than one competition.
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Panels D and E in Table 2 present summary statistics for all submissions and submis-
sions by competitive teams, respectively. The standardized public and private scores
are on average higher for competitive teams, but their scores also present significant
variation (standard deviation of 0.75). Competitive teams also play more frequently
than the rest of the teams—the average time between submissions for competitive teams
and all teams is 1.2 and 1.5 percent of the contest time, respectively.

Observation 1. Most teams have a single member.

Figure 1 shows the evolution of the number of submissions and teams over time. Fig-
ure 1(a) partitions all the submissions into time intervals based on their submission time.
The figure shows that the number of submissions increases over time, with roughly 20
percent of them being submitted when 10 percent of the contest time remains, and only
6 percent of submissions occurring when 10 percent of the contest time has elapsed.
Figure 1(b) shows the timing of entry of new teams into the competition. The figure
shows that the rate of entry is roughly constant over time, with about 20 percent of
teams making their first submission when 20 percent of the contest time remains.

Observation 2. New teams enter at a constant rate throughout the contest.

We also explore the time between submissions at the team level. Figure 2 shows a
local polynomial regression for the average time between submissions as a function
of time. The figure shows that the average time between submissions increases over
time, suggesting that either teams are experimenting when they enter the contest or
that building a new submission becomes increasingly difficult over time. Combined,
Figure 1 and Figure 2 suggest that the increase in submissions at the end of contests is
not driven by all teams making submissions at a faster pace, but simply because there
are more active teams at the end of the contest and potentially more incentives to play.

Observation 3. The rate of arrival of submissions increases with time.

Table 3 decomposes the variance of public scores using a regression analysis. In column
1, we find that 40 percent of the variation in public score is between-team variation,
suggesting that teams differ systematically in the scores that they achieve. In column
2, we control for the number of submissions that a team has submitted up to the time
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Panel A: Competition-level statistics
N Mean St. Deviation Min Max

Number of teams 57 893.702 963.081 79 5,117
Reward quantity 57 30,488.596 66,736.377 1,000 500,000
Length (days) 57 81.69 87.90 1 700

Panel B: Overall team-level statistics
N Mean St. Deviation Min Max

Number of submissions 50,941 16.531 29.538 1 665
Number of members 50,941 1.127 0.604 1 40
Competitive team (indicator) 50,941 0.247 0.431 0 1

Panel C: Team-level statistics — competitive teams
N Mean St. Deviation Min Max

Number of submissions 12,591 40.078 47.904 1 665
Number of members 12,591 1.228 0.881 1 24

Panel D: Overall submission statistics
N Mean St. Deviation Min Max

Public score 842,089 0.004 0.991 -4.000 5.659
Private score 842,089 0.005 0.991 -4.000 5.432
Time of submission 842,089 0.601 0.289 0.000 1.000
Time between submissions 791,146 0.015 0.053 0.000 0.998

Panel E: Overall submission statistics — competitive teams
N Mean St. Deviation Min Max

Public score 504,621 0.358 0.751 -3.999 5.659
Private score 504,621 0.355 0.749 -4.000 5.432
Time of submission 504,621 0.623 0.281 0.000 1.000
Time between submissions 492,030 0.012 0.044 0.000 0.985

Table 2: Summary Statistics

Note: An observation in Panel D and E is a submission; an observation is a team–competition combi-
nation in Panels B and C; an observation in Panel A is a contest. Scores are standardized and time
is rescaled to be contained in the unit interval. Time between submissions is the time between two
consecutive submissions by the same team. Competitive teams are teams that achieved a public score
above the 75th percentile of a contest’s final distribution of scores.
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(b)

Figure 1: Submissions and Entry of Teams Over Time Across all Competitions

Note: An observation is a submission. Panel (a) shows a histogram of submission by elapsed time
categories. Panel (b) shows a local polynomial regression of the number of teams with 1 or more
submissions as a function of time.

(1) (2) (3) (4)
All teams Competitive teams

Public Score Public Score
Submission number 0.0047∗∗∗ 0.0041∗∗∗

(0.0000) (0.0000)
Competition × Team FE Yes Yes Yes Yes
Observations 833,970 833,970 504,410 504,410
R2 0.490 0.513 0.226 0.270

Table 3: Decomposing the Public Score Variance

Note: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a submission. Submission number is defined at the competition–team–submission level and measures
the number of submissions made by a team up to the time of a submission.
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Figure 2: Time Between Submissions

Note: An observation is a submission. The figure shows a local polynomial regression of the time
between submissions as a function of time.

of each submission (e.g., the variable takes the value n−1 for a team’s nth submission).
This variable allows us to capture whether learning can explain some of the variation
in scores. Column 2 shows that later submissions obtain higher scores, but only an
extra 2.3 percent of the variance in scores is explained by this control. This suggests
that while learning may be present, between-team variation explains the majority of
the systematic variation in scores. Columns 3 and 4 repeat the analysis for competitive
teams. In this restricted sample, teams are more homogeneous, so team fixed-effects
explains less of the variation when compared to the whole sample.

Observation 4. Teams systematically differ in their ability to produce high scores.

To understand how the public leaderboard shapes incentives to participate, we regress
an indicator for whether a given submission was a team’s last submission on the distance
between the team’s best public score up to that time and the best public score across all
teams up to that time. Table 4 (Column 1) shows that it is more likely for teams to drop
out of the competition when they start falling behind in the public score leaderboard. A
one standard deviation increase in a team’s deviation from the maximum public score at
time t is associated with a 2.84 percent increase in the likelihood of a team dropping out
of the competition at time t. Column 2 explores whether this result is heterogeneous
between competitive and non-competitive teams, and shows that competitive teams
are less discouraged to quit the competition when they are falling behind, compared to
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(1) (2)
Last submission (indicator)

Deviation from max 0.0284∗∗∗ 0.0138∗∗∗

public score (standardized) (0.000 3) (0.0005)

Deviation * Competitive -0.0156∗∗∗

(0.0005)

Competitive team -0.0646∗∗∗

(0.0009)

Competition FE Yes Yes
Observations 842089 842089
R2 0.020 0.040
p-value F-test 0.0000

Table 4: Indicator for Last Submission as a Function of a Team’s Deviation from the
Maximum Public Score

Note: Robust standard errors in parentheses.∗(p < 0.1), ∗∗(p < 0.05), ∗∗∗(p < 0.01). Deviation from
max public score is the difference between the maximum public score minus the score of a submission,
at the time of that submission. We standardize this variable using its competition-level standard
deviation. See Table 2 for the definition of competitive team.

non-competitive teams.

In Table 5, we analyze how incentives to make a new submission are affected by a
submission that increases the maximum public score by a sufficient amount (e.g., 0.01
for our analysis in Table 5). We call such a submission disruptive. To measure how
a disruptive submission affects incentives to make new submissions, we first partition
time into intervals of length 0.001 and compute the number of submissions in each of
these intervals. We then perform a comparison of the number of submissions before-
and-after the arrival of the disruptive submission, restricting attention to periods that
are within 0.05 time units of the disruptive submission. Column 1 in Table 5 shows
that the number of submissions decreases immediately after a disruptive submission by
an average of 2.24 percent. We take this as additional evidence of players using to the
public leaderboard to make their decisions to continue or to quit. Table 5 (Column 2)
shows that non-competitive teams are discouraged, in contrast to competitive teams.
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(1) (2) (3) (4)
Number of submissions (in logs)

After disruptive submission -0.0224∗∗∗ -0.0373∗∗∗ -0.0506∗∗∗ -0.0395∗∗∗

(0.0081) (0.0095) (0.0107) (0.0097)

After * Competitive 0.0196
(0.0129)

After * Top 50 0.0586∗∗∗

(0.0157)

After * Top 10 0.0885∗∗∗

(0.0195)

Competition FE Yes Yes Yes Yes
Observations 21545 37666 36701 31657
R2 0.819 0.729 0.637 0.694
p-value F-test 0.0522 0.4926 0.0045

Table 5: The Impact of Disruptive Submissions on Participation

Note: Robust standard errors in parentheses. ∗(p < 0.1), ∗∗(p < 0.05), ∗∗∗(p < 0.01). Disruptive
submissions are those that increase the maximum public score by at least 0.01. Number of submissions
is the number of submissions in time intervals of length 0.001. The regressions restrict the sample to
before and after 0.05 time-units of the disruptive submission. All specifications control for time and
time squared. See Table 2 for the definition of competitive team. Top 50 and Top 10 are indicators
for whether the team ended the competition within the top 50 and 10 participants, respectively.

Column 3 repeats the exercise in Column 2 using instead an indicator for teams who
ended in the top 50, and shows similar results. Column 4 repeats the exercise in
Column 3 using instead an indicator for whether the team ended in the top 10, and
shows that top 10 teams are encouraged by a disruptive submission (i.e., they increase
their number of submissions after a disruptive submission). Table 5 complements Table
4 in showing that the leaderboard shapes participation incentives and the leaderboard
has heterogeneous effects across players.

Observation 5. The public leaderboard shapes participation incentives. This effect is
heterogeneous across players.

Players may strategically choose when to release a disruptive submission if they knew
that a submission is disruptive. In this case, teams would have incentives to submit a
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Figure 3: Timing of Drastic Changes in the Public Leaderboard’s Maximum Score
(i.e., Disruptive Submissions): Cumulative Probability Functions

Note: An observation is a submission that increases the maximum public score by at least 0.01. The
figure plots submissions that were made when at least 25 percent of the contest time had elapsed.

disruptive submission as late as possible in the competition to avoid encouraging players
who are capable of generating good scores (Column 4 in Table 5). Empirically, however,
we do not find this effect. Figure 3 plots the timing of submissions that increased the
maximum public score by at least 0.01. To remove outliers, in the figure we restrict
attention to submissions sent after 25 percent of the contest time has elapsed. The
figure suggests that disruptive submissions arrive uniformly over time and the pattern
suggests that teams are either not strategic or they do not know when a submission
will be disruptive. This may be driven by the fact that teams only learn about the out-
of-sample performance of a submission after Kaggle has evaluated it. That is, before
making a submission, the teams can only evaluate the solution using the training data,
which is not fully informative about its out-of-sample performance.

Observation 6. Submissions that disrupt the public leaderboard are submitted uni-
formly over time.
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3 Empirical Model

We consider each contest as a separate game where a number of players enter at a
constant rate over time (Observation 2).11 We model the time of entry of a player as
a random variable, τentry, drawn from an exponential distribution of parameter µ > 0.
Players are heterogeneous in their abilities (Observation 4).12 Each player is endowed
with a type θ ∈ Θ = {θ1, ..., θp} where Pr(θ = θk) ≡ κ(θk), k = 1, ..., p. We assume that
a player’s type is publicly known. We model the score of a submission as a random
variable drawn from a type-dependent distribution Fθ(·).

Players can send multiple submissions throughout the contest, but they must work on
one submission at a time. The cost of building a new submission is privately observed
by each player and it is independently drawn from a distribution c ∼ K. Finishing
a submission takes a player a random time τ distributed according to an exponential
distribution of constant parameter λ (Observation 3). After finishing a submission,
players immediately make the decision of whether to continue playing or to quit forever;
this is a revision game, players have stochastic opportunities to play. Figure 4 shows
the timing of the game before the end of the competition at T .

0 t1 t2 T
time

τentry ∼ exp(µ) τ ∼ exp(λ)

Figure 4: Timing of the game. A player enters at time t1. At this time, the player
decides to continue playing. The next submission takes time t2 − t1 to arrive. At time
t2, the player again decides to quit or play.

The collection of vectors (identity, time, score) from the beginning of the contest until in-
stant t conforms the public leaderboard at time t, denoted by Lt. In this leaderboard the
scores of player i and her rivals are denoted by yi,t and y−i,t, respectively. The vector of
rival scores y−i,t transitions to y−i,s, where s > t, with probability density dG(y−i,s|Lt, t).
The distribution G is an equilibrium object that is consistent with the players’ equilib-

11We find no evidence suggesting that players strategically choose their time of entry. For instance,
there is no significant correlation between the time of entry and the final ranking.

12We ignore team incentives and we treat each team as a single player (Observation 1).
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rium strategies. The expected payoff of player i at the end of the contest, conditional
on a leaderboard LT , is πi(LT ) = πi(yi,T , y−i,T ). Note that ∑i πi(yi,T , y−i,T ) = V , where
V is the total reward in the contest that we normalize to V = 1.13

Public Leaderboard. If player i (of type θ) has an opportunity to play at time t < T

and chooses to quit the contest, her expected payoff is

V Quit(yi,t, y−i,t, t) =
∫
πi(yi,t, y−i,T )dG(y−i,T |Lt, t).

This is, player i’s expected payoff of quitting corresponds to finishing the contest with
her current scores yi,t while rivals finish with scores y−i,T . Player i computes the ex-
pected payoff over rivals’ scores, under the belief that the current rivals’ scores will
transition from y−i,t to y−i,T with probability dG(y−i,T |Lt, t).

If instead of quitting player i chooses to play at time t < T , her expected payoff is

V Play
θ (yi,t, y−i,t, t, c) =

∫ T

t

∫ ∫
Vθ(y′i,s, y−i,s, s)dFθ(y′i,s)λe−λ(s−t)dG(y−i,s|Lt, t)dy′i,sds

+e−λ(T−t)V Quit(yi,t, y−i,t, t)− c.

The first term in the right-hand side of the expression above corresponds to the event
where the new score arrives at time s ∈ (t, T ), which happens with likelihood λe−λ(s−t).
In this case, the scores of player i’s rivals will have transitioned from y−i,t to y−i,s with
likelihood dG(y−i,s|Lt, t), and player i’s scores to y′i,s with likelihood dFθ(y′i,s).14 Im-
mediately upon the arrival of the new submission at time s, and conditional on the
leaderboard at time s, player i decides to continue playing or to quit. The expected
payoff of this decision is captured by the value function Vθ(y′i,s, y−i,s, s). In the com-
plementary event that a new submission does not arrive before the end of the contest,
which occurs with probability e−λ(T−t), player i’s payoff of the same as if she would
have quit at time t. Finally, the cost of a new submission is c.

13The only effect of this normalization is that the distribution of costs c ∼ K must be interpreted
as costs that are proportional to the size of the prize.

14With a slight abuse of notation, dFθ(y′i,s) is the likelihood that player i’s new vector of scores
at time s is y′i,s. This new vector of scores is constructed by adding a new score drawn from the
distribution Fθ(·) to player i’s current the vector of scores yi,t. For instance, if only the maximum
score is payoff-relevant, y′i,s = max{z, yi,t} where z ∼ Fθ(·).
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Player i’s chooses to play if and only if V Quit(yi,t, y−i,t, t) ≤ V Play
θ (yi,t, y−i,t, t, c), i.e.,

c ≤
∫ T

t

∫ ∫
Vθ(y′i,s, y−i,s, s)dFθ(y′i,s)λe−λ(s−t)dG(y−i,s|Lt, t)dy′i,sds

− (1− e−λ(T−t))V Quit(yi,t, y−i,t, t),
(1)

where the value function is

Vθ(yi,t, y−i,t, t) = Ec
[
max{V Play

θ (yi,t, y−i,t, t, c), V Quit(yi,t, y−i,t, t)}
]
.

The equilibrium distribution G captures dynamic participation effects: the score of a
player’s submission disclosed on the leaderboard affects future participation decisions
by their rivals. It is noteworthy to mention that Equation 1 captures a “discouragement
effect”: higher rival scores decrease the right-hand side of the inequality.

The equilibrium concept we use is Markov perfect equilibrium. The decision to play or
to quit for any player facing leaderboard Lt, at time t, and the submission cost c, is
the same. Thus, the (pure) equilibrium strategy of player i, conditional on (Lt, t, c) is
to play iff Equation 1 holds. The existence of an equilibrium follows from arguments
analogous to those in Aguirregabiria and Mira (2007).

No Public Leaderboard. Without a public leaderboard, only the realization of each
player’s own scores can be used to condition the decision of continuing to play or
quitting. The decision problem is similar to a model of sequential search where players
form beliefs about the distribution of final scores. In a similar setting, Taylor (1995)
shows that players’ optimal strategy is a stopping rule: players will stop when their
own score is higher than a threshold. Let W−i(·) be the distribution of final scores on
the leaderboard for all players except player i. This is an equilibrium object capturing
the strategies of the rivals of player i. If player i’s own scores at time t are yi,t and she
decides to quit the contest, her expected payoff is

V Quit(yi,t) =
∫
πi(yi,t, y−i)dW−i(y−i),

where y−i are the scores of player i’s rivals at the end of the contest, which are dis-
tributed according to the (time-independent) distribution W−i(·). If instead of quitting
the contest player i chooses to play, her expected payoff is

V Play
θ (yi,t, t, c) =

∫ T

t

∫
Vθ(y′i,s, s)dFθ(y′i,s)λe−λ(s−t)ds+ e−λ(T−t)V Quit(yi,t)− c.
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In the expression above, in the event of a new score arriving at time s ∈ (t, T ), which
happens with likelihood λe−λ(s−t), player i’s new scores are y′i,s with likelihood dFθ(y′i,s).
At time s, player i decides to either continue playing or to quit. The expected value
of this decision is captured by the value function Vθ(y′i,s, s). In the complementary
event, with probability e−λ(T−t) the new submission does not arrive before the end of
the contest, and player i’s payoff is the same as if she would have quit at time t.

Player i’s optimal decision is to play if and only if

c ≤
∫ T

t

∫
Vθ(yi,s, s)fθ(y′i,s)λe−λ(s−t)ds− (1− e−λ(T−t))V Quit(yi,t) (2)

where the value function is

Vθ(yi, t) = Ec
[
max{V Play

θ (yi,t, t, c), V Quit(yi,t)}
]
.

Note that each distribution W−i(·) (uniquely) determines the function V Quit(yi,t), the
expected payoff of quitting conditional on scores yi,t.

We also use the equilibrium concept of Markov perfect equilibrium. However, the
decision to play or to quit for any player depends only on her current scores, the
current time, and submission cost. Thus, the (pure) equilibrium strategy of player i,
conditional on (yit, t, c) is to play iff Equation 2 holds. The existence of an equilibrium
again follows from arguments analogous to those in Aguirregabiria and Mira (2007).

3.1 Discussion of Modeling Assumptions

Some of the assumptions in our model are made for computational tractability or to
keep the model parsimonious, whereas others are justified from empirical observations.

Our analysis does not incorporate learning both because of tractability and because
Table 3 shows that between-team differences explain the majority of the systematic
variation in scores. Some teams may experiment and improve their performance over
time, but we show in Table 3 that this effect is of second order relative to the variance
in scores that can be explained by the “innate” ability of players.15

15Clark and Nilssen (2013), for example, present a theory of learning by doing in contests.
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A second assumption of our model is that entry is exogenous. In reality, players choose
which contests to participate in. Azmat and Möller (2009) show that contest design (in
particular, the allocation of prizes) affects players decisions when they choose among
multiple contests. Levin and Smith (1994), Bajari and Hortacsu (2003), and Krasnokut-
skaya and Seim (2011) explore how endogenous entry affects equilibrium outcomes and
optimal design in auctions. Although we acknowledge this shortcoming of our analysis,
we have various reasons to make this assumption. First, in our data most players partic-
ipate in a single contest (see Table A.3 in the Online Appendix), so it is hard to define a
group of potential entrants. Second, all contests in Kaggle display a leaderboard, so we
cannot identify how this feature of contest design (displaying a leaderboard) affects en-
try using the observational data. Finally, and as we will discuss below, our experiment
reveals that contests with and without a public leaderboard draw the same amount of
participants on average, which alleviates the concern of endogeneous entry.

A third potential concern is the assumption that players do not strategically choose
when to send their submissions. Ding and Wolfstetter (2011) show that players could
withhold their best solutions and negotiate with the sponsor of the contest after the
contest has ended. This selection introduces a bias on the quality of submitted solu-
tions. In our setting, players benefit by sending a submission, because they receive a
noisy signal about the performance of the submission. We also find that the timing of
disruptive submissions is roughly uniformly distributed over time (as shown in Figure 3)
and that there is no correlation between the final ranking and the time of entry, which
alleviates the concern about strategic timing of submissions.

Also related is the assumption that players make a decision to continue or to quit
immediately after the arrival of a submission. If we observe two submissions by a
player at times t1 and t2, we know that this player must have spent some time t ∈
[0, t2− t1] working on the submission. Instead of modeling the distribution of idle time
between submissions—similar to the random time of play assumption in Arcidiacono
et al. (2016)—we assume that the idle time is zero, i.e, t = t2 − t1. We make this
assumption because we observe a short time between submissions. Thus, the effect of
idle time is likely to be small, but adding this effect would incorporate an extra burden
in the estimation of our model.
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4 Estimation

For each contest in our dataset we estimate the parameters of the model in two steps.
We first estimate a number of primitives without using the full structure of the model.
We then use these estimates for the estimation of the remaining parameters using
a likelihood function based on the model. When estimating the model, we restrict
attention to the subsample of competitive teams (see Table 2).

The full set of parameters for a given contest include: i) the distribution of new player
arrival times, which we assume follow an exponential distribution with parameter µ;
ii) the distribution of submission arrival times, which we assume follow an exponen-
tial distribution with parameter λ; iii) the distribution of private score conditional on
public score, H(·|ppublic), which we assume is given by pprivate = α+ βppublic + ε, with ε
distributed according to a double exponential distribution; iv) the type-specific cumu-
lative distribution of public scores, which we assume is given by the standard normal
distribution, Qj(x) = Φ

(
x−θmean

j

θst.dev
j

)
for type θj; v) the distribution of types, κ, which

we assume is a discrete distribution over the set of player types, Θ; and, lastly, vi)
the distribution of submission costs, which we assume has a support that is bounded
above by 1 (i.e., the normalized value of the total prize money), and has a cumulative
distribution function given by K(c;σ) = cσ (with σ > 0).

We estimate primitives i) through v) in a first step that does not require the full
structure of the model, and vi) using the likelihood function implied by the model. i),
ii), and iii) are estimated using the maximum likelihood estimators for µ, λ, and (α, β),
respectively. iv) and v) are specified as a Gaussian mixture model that we estimate using
the EM algorithm. The EM algorithm estimates the k Gaussian distributions (and their
weights, κ(θk)) that best predict the observed distribution of public scores. Throughout
our empirical analysis we assume that there are k = 2 player types.16 Section B in the
Online Appendix provides additional details of the estimation procedure.

We estimate the distribution of costs using the likelihood function implied by the model,
which is based on the decision of a player to make a new submission. Recall that a player
can make a new submission immediately after the arrival of her previous submission.

16We experimented with different number of types. k = 2 is parsimonious and gave us a good fit.
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A player of type θ facing state variables s chooses to make a new submission at time t
if and only if

c ≤ Γθ,t(s), (3)

where c is the cost of a submission and Γθ,t(s) are the net benefits of making a new
submission at time t for a player of type θ given state variables s. This is, Γθ,t(s)
corresponds to the right hand-side of Equation 1 in competitions with a leaderboard.
Γθ,t(s) depends on primitives estimated in the first step of the estimation, player type,
and the equilibrium conditional choice probabilities (CCPs) reflecting the equilibrium
behavior of all players in the remaining time of the contest. Based on Equation 3, a
θ-type player facing state variables s plays at time t with probability

Pr(play|s, t, θ) = Pr(c ≤ Γθ,t(s)) = K (Γθ,t(s);σ) .

The likelihood function is constructed using tuples {(si, ti, t′i, θi)}i∈N , where i is a sub-
mission, si is the vector of state variables at the moment of making the submission, ti is
the submission time, t′i is the arrival time of the next submission, and θi is player type.
Because t′i is not recorded for the last observed submission of each player, we simply set
t′i to t′i > T for the last observed submission of each player, and address this censoring
when constructing the likelihood function. The type of each player is not observed in
the data, but we use the vector of scores of each player combined with estimates both of
the distribution of player types and the type-specific distribution of scores to compute
the posterior probability of a player being of type θj. We then use the Bayes classifier
to assign a type to each player (see Section B in the Online Appendix for details). We
assume that our estimates for the type of each player matches the information held by
the players in the game.

The likelihood function considers two cases. If the next submission arrives before the
end of the contest, i.e., ti < t′i ≤ T , then the player must have chosen to make a
new submission at ti, and the likelihood of the observation (si, ti, t′i, θi) is given by
l(si, ti, t′i, θi) = Pr(play|si, ti, θi) · λe(−λ(t′i−ti)), where λe(−λ(t′i−ti)) is the density of the
submission arrival time. If the submission at time ti was the player’s last recorded
submission, i.e., t′i > T , then the likelihood of (si, ti, t′i > T, θi) is given by l(si, ti, t′i >
T, θi) = Pr(play|si, ti, θi) · e(−λ(T−ti)) + 1 − Pr(play|si, ti, θi), which considers both the
events of i) the player choosing to make a new submission at ti and the submission
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arriving after the end of the contest; and ii) the event of the player choosing not to
make a new submission.

Evaluating the likelihood function requires computing the net benefits of making a new
submission for a player of type θ at time t and given state variables s (i.e., Γθ,t(s)),
which depend on the equilibrium CCPs. A full-solution method where we compute
the equilibrium of the game for every trial vector of parameters is computationally
infeasible given the dimensionality of the state space. Hence, we use a CCP-based
estimator, which makes use of estimates of the equilibrium CCPs to simulate the net
benefits of making a new submission (Hotz and Miller, 1993; Hotz et al., 1994). We
simulate the net benefits of making a new submission (as opposed to computing them
based on the value functions) mainly because of the dimensionality of the state space,
but also because it saves us from having to discretize the state space, which is costly
because the scores on the leaderboard are continuous variables. We provide details
on how we estimate the CCPs and how we simulate the net benefits of making a new
submission in Section B in the Online Appendix.

While the CCP-based estimator makes the estimation problem feasible, it is still com-
putationally costly because the econometrician needs to simulate continuation histories
of the game for every observation in the estimation sample in games with hundreds
or even thousands of players playing repeatedly.17 As a consequence, we estimate the
parameters of the cost distribution of each contest on a (stratified) random sample of
100 observations, and make use of the weighted maximum likelihood estimator in Man-
ski and Lerman (1977), where the weights are used to correct for the oversampling (or
undersampling) of each strata.18

17In the estimation, we simulate the net benefits of making a new submission for every observation
in the estimation sample based on 200 simulations of continuation histories.

18The stratified random sample of each contest includes four stratas. For every type of player, the
sample includes i) submissions that are the last recorded submission of a player, and ii) submissions
that are not the last recorded submission of a player.
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4.1 Model Estimates

Table 6 presents the maximum likelihood estimates for the submission-cost distribution
as well as for the distributions of entry time and submission arrival time. Table A.5
in the Online Appendix presents the EM algorithm estimates for the type-specific dis-
tributions of scores, and Table A.6 in the Online Appendix presents estimates for the
distribution of private scores conditional on public scores. All primitives of the model
were estimated separately for each contest.

Table 6 (Column 1) shows estimates for the players’ rate of entry in a given competition.
The estimates imply that the average entry time (1/µ) ranges between 22 and 63 percent
of the contest time, and the mean average entry time across all contests is 41 percent
of the contest time. Table 6 (Column 3) presents the estimates for the rate at which
submissions are completed. In line with Table 2, the estimates suggest that the average
time between submissions (1/λ) ranges between 0.5 and 5.5 percent of the contest time,
and the mean average time between submissions across all contests is 1.5 percent of the
contest time.

Table 6 (Column 5) presents estimates for the coefficients governing the distribution
of submission costs. These estimates imply that the expected submission cost ranges
between 2.2 and 531 dollars (percentiles 5 and 95, respectively).19 Figure 5 shows some
implications of our estimates. Figure 5(a) shows the distribution of the expected cost
of making a submission (in dollars), and Figure 5(b) shows the daily cost of working on
a submission (in dollars). The average values for the expected cost of a submission and
the daily cost of a submission are 170.77 and 99.78 dollars, respectively. Figure 5(c)
shows a scatter plot of the total expected cost spent by all participants of a contest and
the prize, both measured in logs. We can see that in the majority of the contests the
total expected cost is greater than the prize. This is a feature of rent-seeking contests:
competition pushes participants to exert inefficiently high levels of effort relative to the
size of the prize (rent dissipation).

Table 7 studies how the estimates for the average cost of making a submission, the rate
of team entry, and the rate of arrival of submissions vary as a function of contest prize.

19The expected cost in dollars is given by E[c] = E
[
c
V

]
V = σV

1+σ , where V is the total reward.
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Figure 5: Estimates for the cost of making a submission
Note: An observation is a contest. Cost of a submission per day is the expected cost divided by the
average number of days between submissions. The average values for the expected cost of a submission
and the daily cost of a submission are 170.77 and 99.78 dollars, respectively. The expected cost of all
submissions is the expected cost of a submission multiplied by the predicted number of submissions for
each contest. The predicted number of submissions is based on 200 simulations of each contest using
our model estimates.
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µ SE λ SE σ SE logL(δ̂)/N N

hhp 2.585 0.1701 191.9182 1.6088 0.0089 0.0004 -3.809 14231
allstate-purchase-prediction-challenge 1.9856 0.1276 125.4499 1.1689 0.0009 0.0001 -2.6272 11519
higgs-boson 2.3698 0.114 122.1003 0.8177 0.0043 0.0002 -3.6653 22298
acquire-valued-shoppers-challenge 2.0772 0.1316 165.2723 1.2866 0.0032 0.0002 -3.846 16500
liberty-mutual-fire-peril 3.3432 0.3202 122.5353 1.3388 0.001 0.0001 -3.7003 8377
axa-driver-telematics-analysis 2.4434 0.1408 127.4859 0.8925 0.0003 0.0001 -3.3961 20405
crowdflower-search-relevance 2.2697 0.1163 79.1331 0.6272 0.0047 0.0003 -3.193 15919
caterpillar-tube-pricing 3.2701 0.1758 68.2329 0.5562 0.0025 0.0002 -3.0241 15047
liberty-mutual-group-property-inspection-prediction 3.1055 0.1152 67.0227 0.4112 0.0047 0.0002 -2.8525 26573
coupon-purchase-prediction 2.0586 0.1093 73.1853 0.6539 0.005 0.0003 -1.5545 12526
springleaf-marketing-response 3.0405 0.1689 97.3279 0.7153 0.0014 0.0001 -2.9404 18513
homesite-quote-conversion 2.4958 0.1548 128.5381 0.9678 0.0035 0.0002 -3.3492 17638
prudential-life-insurance-assessment 2.16 0.0799 78.0741 0.4707 0.0068 0.0003 -2.7802 27512
santander-customer-satisfaction 2.3098 0.0563 75.1579 0.3048 0.0037 0.0002 -3.108 60816
expedia-hotel-recommendations 2.2792 0.086 43.2208 0.3422 0.0042 0.0003 -1.7432 15948

Table 6: Maximum Likelihood Estimates of the Cost and Arrival Distributions (partial list).

Note: The model is estimated separately for each contest. Asymptotic standard errors are reported in
the columns that are labeled ‘SE.’ See Table A.4 in the Online Appendix for the full table.

Table 7 (Columns 1 and 2) show a positive correlation between the contest reward
and both the average cost of making a submission and the rate of new submissions,
which suggests that contests with larger prizes are more difficult and participants send
submissions more frequently. The greater difficulty is consistent with the empirical
observation that teams remain active for less time in competitions with greater rewards
(i.e., the exit rate is higher). To capture this pattern in the data, the model needs a
larger cost in order to fit the larger exit rate.20 Table 7 (Column 3) shows that entry
rates are not significantly correlated with the size of the prize. This is further evidence
that the timing of entry is likely not strategically chosen. Finally, Figure A.1 in the
Online Appendix presents a scatter plot of the entry rate of teams and the arrival rate
of submissions, and shows a weak negative correlation.

With respect to how well the model fits the data, Figure 6 plots the actual versus the
predicted number of submissions in each contest. The predicted number of submissions
in a contest is computed by averaging the number of submissions across 200 simulations
of each contest. The simulations make use of the estimates of the model and take the
number of teams that participate in each contest as given. Figure 6(a) shows the model

20Almost every competition in our data lasts three months, so the data offers little variation in
contest length to establish relationships between parameter estimates and contest length.
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(1) (2) (3)
logE[c] log λ log µ

log Prize (in USD) 1.073∗∗∗ 0.209∗∗∗ -0.004
(0.136) (0.039) (0.022)

Observations 57 57 57
R2 0.411 0.236 0.000

Table 7: Parameter estimates and contest observables

Note: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a contest. Expected cost is measured in dollars and is given by E[c] = E[c/V ]V = σ/(1 + σ)V , where
V is the total prize. The values of σ, µ, λ are reported in Table A.4.

fit in terms of total number of submissions. The figure shows that the model does not
systematically over- or under-predict participation. The correlation between the actual
and the predicted number of submissions is 0.92. Figure 6(b) shows the model fit in
terms of total number of submissions by high-type players, where type θi is the high
type if θmeani + 3θst.devi > θmeanj + 3θst.devj . In this case, the correlation between the
actual and the predicted number of submissions is 0.88. Figure 7 shows the fit of the
EM algorithm estimates for the score distributions of two competitions. These figures
combined suggest a good fit of the model to the data along the dimensions of total
number of submissions, total number of submissions by high types, and type-dependent
distribution scores.
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Figure 6: Model prediction for various contest outcomes

Note: An observation is a contest. The solid line is the 45-degree line. The coefficient of correlation
between the actual and predicted number of submissions is 0.92; and between the actual and predicted
number of submissions by high-type players is 0.88. Estimates of the type-specific score distributions
are used to compute posterior probabilities of the type of each player. Players are then classified
between low and high type using the Bayes classifier (see Section B in the Online Appendix for details).
The predicted outcomes are based on 200 simulations of each contest using our model estimates.
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(a) Estimated distribution of scores by type.
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(b) Empirical distribution of scores and model
fit.

Contest: DontGetKicked
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(c) Estimated distribution of scores by type.
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(d) Empirical distribution of scores and model
fit.

Figure 7: Estimates of the distribution of scores by type for two contests

Note: EM algorithm estimates for the distribution of scores by type are reported in Table A.5 in the
Online Appendix.

30



5 Counterfactual Information Design

We investigate the impact of information disclosure, in the form of a real-time public
leaderboard, on contest outcomes. We do this by comparing contest outcomes in the
equilibria with and without a public leaderboard. We compare the total number of sub-
missions and the maximum score in these two cases. The total number of submissions
is a proxy for diversity whereas the maximum score measures the quality of the “best
solution.” To do this, we recompute the equilibrium of the game in a counterfactual
design where the sponsor does not display the public leaderboard: participants only
observe their own scores but they do not observe their rivals’ scores.21

How does performance feedback in a real-time public leaderboard impact players’ in-
centives? Consider first the case of a contest with a public leaderboard. In this case,
a player who has the opportunity to play at a given time t observes her current rank-
ing before deciding to continue playing or to quit. A history with a high maximum
score on the leaderboard discourages players to continue playing. If the history of the
contest was exactly the same, but players did not have access to the leaderboard, a
player with low scores may choose to continue playing. The reason is that without
a public leaderboard players follow a stopping-rule, and players with low scores keep
playing if they have not reached the stopping threshold. On the other hand, a player
with no information may stop playing too soon relative to a player who has access to a
public leaderboard. For instance, a player without information could stop early in the
contest after drawing a score above the threshold dictated by her stopping rule. Had
this player observed the scores on the leaderboard, she would have realized that her
chances of winning were slim giving her current standing in the competition. Thus, she
may have continued drawing scores beyond her stopping-rule threshold, dictated by the
equilibrium without a leaderboard, to improve her changes of winning.

Table 8 reports estimates for the change in (average) contest outcomes when comparing
the cases of a contest without and with a public leaderboard. Table 8 (Column 1) shows
that hiding the public leaderboard on average reduces the total number of submission

21Taylor (1995) focuses in the unique symmetric equilibrium. Our numerical analysis suggests the
existence of one symmetric equilibrium, where all players of a type use the same strategy, so we restrict
attention to this equilibrium.
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(1) (2) (3) (4)
Number of submissions (in logs)

All players Low-type players High-type players Max score (in logs)
No leaderboard -0.210∗∗ 0.205 -0.237∗ -0.017∗∗

(0.088) (0.159) (0.121) (0.007)
Observations 114 114 114 114
R2 0.944 0.873 0.903 0.996

Table 8: The impact of the leaderboard on contest outcomes

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a contest–design combination. All specifications include contest fixed effects. The outcome variables
in Columns 1-3 are the number of submissions by all players, the number of submissions by low-type
players, and the number of submissions high-type players (all in logs), respectively. Type θi is defined
as the high-type if θmeani + 3θst.devi > θmeanj + 3θst.devj .

by 21 percent. Table 8 (Columns 2 and 3) show that this reduction is driven by
fewer submissions by high-type players, where we define type θi to be the high type
if θmeani + 3θst.devi > θmeanj + 3θst.devj (see Table A.5 for the type-specific parameter
estimates). Table 8 (Column 4) shows that the maximum score on average decreases
by 1.7 percent, which is a consequence of the decrease in the number of submission by
high-type players.

To study the impact of information disclosure in more detail, we examine the total
number of submissions of a player in three different scenarios. First, we compute the
total number of submissions of a player in a contest without a leaderboard (nno lb).
Second, we compute the total number of submissions of a player in a contest with a
leaderboard (nlb). And third, we compute the total number of submissions of a player
in a contest where everyone has access to a leaderboard but her (n′no lb). We then
decompose the difference in the number of submissions with and without a leaderboard
into two terms:

nlb − nno lb︸ ︷︷ ︸
Total Effect

= (nlb − n′no lb)︸ ︷︷ ︸
Information Disclosure Effect

+ (n′no lb − nno lb)︸ ︷︷ ︸
Equilibrium Adjustment

(4)

The first term in Equation 4, the information disclosure effect, captures the increase/decrease
in the number of submissions of a player with access to a public leaderboard relative
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to the case where the same player does not have access to a leaderboard, under the
assumption that all her rivals behave according to the equilibrium strategy of a contest
with a leaderboard. The second term in Equation 4, the equilibrium adjustment effect,
captures the change in the number of submissions by a player who does not observe
the leaderboard when facing rivals who play according to the equilibrium strategy of
a competition with a leaderboard (n′no lb) relative to the case of facing rivals who play
according to the equilibrium strategy of a competition without a leaderboard (nno lb).

Figure A.2 shows that the total effect of the leaderboard on the number of submis-
sions is mostly driven by the information disclosure effect. That is, players’ strategies
are different with and without a leaderboard, but the main difference is the possibil-
ity of conditioning the decision to quit on the leaderboard’s information, rather than
on different beliefs about the strategies used by rival players. Note that the informa-
tion disclosure effect captures the difference in participation when a player experiences
discouragement from lagging behind in the competition (the case with a leaderboard)
relative to the case of a player considering whether to cannibalize her past scores while
making a probabilistic assessment of her current position in the contest (the case with-
out a leaderboard). Thus, the information disclosure effect is one way of measuring the
relative weight of these effects on the incentives to play.

Table 8 shows that hiding a public leaderboard on average worsens contest outcomes.
However, in line with theoretical results on information disclosure, a public leaderboard
does not always improve contest outcomes (Rieck, 2010). Figure 8 shows the heterogene-
ity in the direction and magnitude of the change in contest outcomes when comparing
the cases with and without a public leaderboard. The figure shows that, for most of
the contests, displaying a public leaderboard improves contest outcomes. For instance,
Figure 8(c) shows that the maximum score decreases with a public leaderboard only
for about 20 percent of the contests.

Lastly, we test some theoretical predictions regarding the heterogeneous effects of a
leaderboard on contest outcomes. Rieck (2010) shows that a leaderboard may increase
or decrease contest outcomes depending on the cost-to-prize ratio and the shape of
the distribution of scores.22 We regress the total effect and the information disclosure

22Specifically, Rieck (2010) provides a condition for the public leaderbord to increase the expected
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Figure 8: The impact of the leaderboard on contest outcomes: Heterogeneity analysis

Note: An observation is a contest. Each figure plots the difference between the equilibrium outcome
with a leaderboard and the equilibrium outcome without the leaderboard. Equilibrium outcomes are
based on 200 simulations of each contest using our model estimates. The vertical line in each plot
shows the expected value of the plotted distribution.
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effect in Equation 4 on the expected cost-to-prize ratio and on the variance of the
distribution of scores of high-type players. Table 9 shows that the difference in the
average number of submissions by a team with a leaderboard and without a leaderboard
increases both with a higher cost-to-prize ratio and a higher variance of the distribution
of scores of high-type players. The same relationship holds true for our measure of the
value of information.23 Intuitively, information is more valuable when the cost of a new
submission is higher. Information is irrelevant in the extreme case that new submissions
are free—it is strictly dominant to make new submissions as often as possible. When
the cost of new submissions is high, the cost of erring on the side of staying in the
contest for too long is also higher. Regarding the variance of the distribution of scores
of high-type players, a higher variance reduces the value of knowing who is leading
the competition, as competition leaders change more frequently. At the same time, it
encourages players with low scores to keep drawing, so the stopping threshold increases.
We show that these effects increase participation on average.

6 Experimental Evidence

To complement our structural estimates, we ran a randomized control trial on Kaggle.24

The objective of the experiment is to provide additional evidence—independent of our
model’s assumptions—on how information disclosure impacts participation and contest
outcomes. The experiment allowed us to observe contest outcomes in competitions with
and without a leaderboard, keeping other aspects of the contest fixed (e.g., difficulty,
prize, duration, number of participants).

maximum score.
23As a robustness check, Table A.7 in the Appendix expands the results in Table 9 by including

more covariates. None of the coefficients on these additional covariates are significant at a 5-percent
level of significance.

24Approval from the University of Illinois Human Subjects Committee, IRB18644.
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(1) (2)
Total effect (nlb − nno lb) Information Disclosure (nlb − n′no lb)

σ 3.7055∗∗ 4.5542∗∗∗

(1.4468) (1.4690)

θst.devhigh type 4.8077∗∗∗ 4.6962∗∗∗

(1.5236) (1.5545)
Observations 57 57
R2 0.171 0.190

Table 9: Explaining the impact of the leaderboard on contest outcomes

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation
is a contest. Total effect is the difference in the average number of submissions by a team with a
leaderboard and without a leaderboard. Information disclosure is the difference between the average
number of submissions by a team in the equilibrium with a leaderboard and the average number of
submissions by the same team when this team that does not observe the leaderboard but knows that all
other teams observe the leaderboard. All independent variables are measured in standard deviations.
σ is the parameter of the cost distribution; θst.devhigh type is the standard deviation of the distribution of
scores of high-type players. Type θi is defined as the high-type if θmeani + 3θst.devi > θmeanj + 3θst.devj .

6.1 Description of the Experiment

We hosted 44 competitions on Kaggle and each competition was randomly assigned
to the treatment or control groups. Our treatment competitions displayed a real-time
leaderboard, providing information about the performance of all participants, whereas
our control competitions did not provide feedback to players. All of the competitions
were identical in other aspects of design. The competitions were run simultaneously
and lasted for 10 days. The competitions entailed solving a simple prediction problem:
to interpolate a function (see Online Appendix C for details). Participants were allowed
to submit up to 10 sets of predictions per day. The most accurate predictions in each
competition were awarded an Amazon gift card worth $50.

We recruited 220 students (both undergraduates and graduates) from the University
of Illinois at Urbana-Champaign, via emails, department newsletters, and flyers. Par-
ticipants were asked to complete an initial survey from which we obtained information
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Invited players Entrants
Variable Control Treatment t-stat Control Treatment t-stat
participated_past 0.236 0.191 -0.954 0.202 0.244 0.507
software_code 0.964 0.973 0.403 0.968 0.987 0.909
stat_tools 0.882 0.836 -0.883 0.887 0.934 0.822
mach_learning 0.536 0.518 -0.276 0.615 0.607 -0.082
regression 0.736 0.709 -0.487 0.808 0.747 -0.77

Table 10: Average covariates at the contest level: Randomization results

Notes: An observation is a contest. ‘Invited players’ is the pool of players who were invited to enter a
competition, and ‘Entrants’ is the pool of players who submitted at least one submission during the
competition. Treated contests are the contests where a leaderboard was displayed. All variables are
defined at the contest level as follows: ‘participated_past’ is the share of players who have participated
in a prediction contest in the past, ‘software_code’ is the share of players who know how to use a
statistical software, ‘stat_tools’ is the share of players who have statistical skills, ‘mach_learning’ is
the share of players who have machine learning skills, and ‘regression’ is the share of players who have
regression analysis skills.

about participants such as past experience with online competitions and data analysis.
There were also asked to create a Kaggle username. With this pool of potential players,
we formed 44 competitions of 5 players each. Participants were randomly allocated to
these 44 competitions. On average, 3.227 and 3.545 players submitted at least one
submission during the competition in the control-group and treatment-group contests,
respectively, and this difference is not statistically significant (t-stat= 1.151).

Table 10 shows the outcome of the randomization. The left panel (“Invited players”)
shows the balance of covariates across competitions in the treatment and control groups.
The table shows no statistically significant differences across groups in a number of co-
variates related to the participants’ knowledge of statistical tools and experience. The
right panel (“Entrants”) repeats the analysis, but restricts attention to the participants
who submitted at least one solution during the competition. Again, we find no sta-
tistically significant differences across contests in the composition of the control and
treatment groups.
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(1) (2) (3) (4) (5) (6)
Maximum score Number of submissions

No leaderboard -0.057∗∗ -0.045∗∗ -0.050∗∗ -31.636∗∗∗ -26.767∗∗∗ -26.758∗∗∗

(0.022) (0.019) (0.020) (7.073) (5.250) (5.973)
[0.014] [0.03] [0.042] [0.000] [0.000] [0.000]

Entrants 0.038∗∗∗ 0.038∗∗∗ 15.302∗∗∗ 15.843∗∗∗

(0.013) (0.014) (3.050) (3.244)
Controls No No Yes No No Yes
Observations 44 44 44 44 44 44
R2 0.135 0.332 0.398 0.323 0.565 0.610
Dep. variable mean 0.192 0.192 0.192 23.636 23.636 23.636

Table 11: The effect of the leaderboard on contest outcomes: Experimental results

Notes: Robust standard errors in parentheses. p-values for Monte Carlo permutation tests to allow
for arbitrary randomization procedures in squared brackets (based on 1,000 replications). ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is a contest. The definition of the variables is as follows:
‘No leaderboard’ is an indicator for contests without a leaderboard and ‘Entrants’ is the number
of entrants. Controls include the share of participants in the contest who have i) participated in a
prediction contest in the past, ii) know how to use a statistical software, iii) have statistical skills, iv)
have machine learning skills, and v) have regression analysis skills.

6.2 Experimental Results

Table 11 shows the main results of the experiment, which are in line our model-based
evidence: Participation and the maximum score improve when a real-time leaderboard
is displayed. Columns 1, 2 and 3 in Table 11 show that outcomes on average worsen
in competitions that do not display a leaderboard, relative to competitions with a
leaderboard. Column 1 shows that the maximum score was on average 0.057 lower in
competitions without a leaderboard, a magnitude that is 29.68 percent of the average
maximum score across all contests. This result is robust to controlling for the number
of entrants in each competition (column 2) and after controlling for player covariates
(column 3).

Columns 4, 5, and 6 in Table 11 show that the number of submissions is on average
lower in competitions without a leaderboard versus competitions with a leaderboard.
Column 4 shows that competitions without a leaderboard received an average of 31.636

38



fewer submissions than competitions with a leaderboard, which is a large effect relative
to the average number of submissions across all contests. This result is also robust
to controlling for the number of entrants in each competition (column 5) and player
covariates (column 6).

7 Discussion

We contribute to the literature of dynamic competition design by investigating whether
outcomes in a competition improve when players’ performance is disclosed in a real-time
public leaderboard. We first use field data from Kaggle.com to build and estimate a
structural model for the observed design, which features a real-time public leaderboard.
We use these parameters to compute the counterfactual equilibrium in which players
do not observe a leadeboard.

The comparison of both equilibria shows that a public leadearboard on average im-
proves outcomes: the total number of submissions on average increases 21 percent and
the maximum score on average increases 1.7 percent in competitions that display a
leaderboard. Even more, we find that a leaderboard on average increases participation
because it encourages high-type players to stay longer in the competition, and prompts
low-type players to quit earlier.

Displaying a leaderboard, however, may be detrimental in some competitions. A leader-
board may improve or it may worsen outcomes depending on features of a competition
such as the cost-to-prize ratio and the shape of the distribution of scores. The reason is
that disclosing information discourages players that lag behind. This is, a player may
decide to quit when her scores are too low compared to the scores of the players lead-
ing the competition. In contrast, without a leaderboard a player’s own scores and her
beliefs about final scores by her rivals are used to decide when to quit. A leaderboard
has theoretically ambiguous effects. We find that the cost-to-prize ratio and the vari-
ance of the distribution of scores of high-type players are positively correlated with the
difference in the number of submissions with and without a leaderboard. Intuitively,
information is more valuable for players when new submissions are more costly, and
players are less discouraged from information disclosure when the variance of scores is
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higher, because the leader of the competition is replaced more frequently. This suggests
that a contest designer would benefit from a displaying public leaderboard in compe-
titions where there is a large variation in players’ scores or where new submissions are
costly relative to the prize.

To complement our model-based analysis, we ran an experiment in which we randomly
allocated participants into competitions without a leaderboard (control group) or with
a leaderboard (treatment group). The experimental analysis is independent of our mod-
eling assumptions, so it serves the double purpose of providing experimental evidence
and testing the predictions of our model. Our experimental findings are consistent with
our model-based analysis results: the number of submissions and the maximum score
on average increase in competitions when displaying a public leaderboard.
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Online Appendix: Not For Publication

Dynamic Tournament Design:

Evidence from Prediction Contests

Jorge Lemus and Guillermo Marshall

A Additional Tables and Figures

Public Ranking Cumulative
of Winner Frequency Probability Probability

1 29 50.88 50.88
2 13 22.81 73.68
3 3 5.26 78.95
4 6 8.77 87.72
5 1 1.75 89.47
6 2 3.51 92.98
11 3 5.26 98.25
54 1 1.75 100.00

Table A.2: Public Leaderboard Ranking of Competition Winners

Note: An observation is a contest.
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Number Overall Competitive
of Competitions Frequency Probability Frequency Probability

1 22,034 71.26 3,556 57.78
2 4,350 14.08 1,024 16.64
3 1,835 5.70 510 8.29
4 908 2.82 275 4.47

5 or more 1,976 6.14 789 12.82

Table A.3: Number of Competitions by User

Note: An observation is a team member.
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Contest Name of the Total Number of Teams Start Date Deadline
Number Competition Reward Submissions
1 Predict Grant Applications 5,000 2,800 204 12/13/2010 02/20/2011
2 RTA Freeway Travel Time Prediction 10,000 2,958 348 11/23/2010 02/13/2011
3 Deloitte/FIDE Chess Rating Challenge 10,000 1,428 167 02/07/2011 05/04/2011
4 Heritage Health Prize 500,000 23,421 1,221 04/04/2011 04/04/2013
5 Wikipedia’s Participation Challenge 10,000 995 88 06/28/2011 09/20/2011
6 Allstate Claim Prediction Challenge 10,000 1,278 102 07/13/2011 10/12/2011
7 dunnhumby’s Shopper Challenge 10,000 1,872 277 07/29/2011 09/30/2011
8 Give Me Some Credit 5,000 7,658 920 09/19/2011 12/15/2011
9 Don’t Get Kicked! 10,000 7,167 570 09/30/2011 01/05/2012
10 Algorithmic Trading Challenge 10,000 1,169 95 11/11/2011 01/08/2012
11 What Do You Know? 5,000 1,616 228 11/18/2011 02/29/2012
12 Photo Quality Prediction 5,000 1,315 194 10/29/2011 11/20/2011
13 Benchmark Bond Trade Price Challenge 17,500 2,487 248 01/27/2012 04/30/2012
14 KDD Cup 2012, Track 1 8,000 13,076 657 02/20/2012 06/01/2012
15 KDD Cup 2012, Track 2 8,000 5,276 163 02/20/2012 06/01/2012
16 Predicting a Biological Response 20,000 7,668 647 03/16/2012 06/15/2012
17 Online Product Sales 22,500 3,532 346 05/04/2012 07/03/2012
18 EMI Music Data Science Hackathon - July 21st - 24 hours 10,000 1,282 132 07/21/2012 07/22/2012
19 Belkin Energy Disaggregation Competition 25,000 1,399 160 07/02/2013 10/30/2013
20 Merck Molecular Activity Challenge 40,000 2,979 236 08/16/2012 10/16/2012
21 U.S. Census Return Rate Challenge 25,000 2,385 231 08/31/2012 11/11/2012
22 Amazon.com - Employee Access Challenge 5,000 16,872 1,687 05/29/2013 07/31/2013
23 The Marinexplore and Cornell University Whale Detection Challenge 10,000 3,282 244 02/08/2013 04/08/2013
24 See Click Predict Fix - Hackathon 1,000 1,001 79 09/28/2013 09/29/2013
25 KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 7,500 2,216 235 04/19/2013 06/12/2013
26 Influencers in Social Networks 2,350 2,004 129 04/13/2013 04/14/2013
27 Personalize Expedia Hotel Searches - ICDM 2013 25,000 3,409 331 09/03/2013 11/04/2013
28 StumbleUpon Evergreen Classification Challenge 5,000 7,123 593 08/16/2013 10/31/2013
29 Personalized Web Search Challenge 9,000 3,021 177 10/11/2013 01/10/2014
30 See Click Predict Fix 4,000 5,314 517 09/29/2013 11/27/2013
31 Allstate Purchase Prediction Challenge 50,000 24,526 1,568 02/18/2014 05/19/2014
32 Higgs Boson Machine Learning Challenge 13,000 35,772 1,785 05/12/2014 09/15/2014
33 Acquire Valued Shoppers Challenge 30,000 25,138 952 04/10/2014 07/14/2014
34 The Hunt for Prohibited Content 25,000 4,992 285 06/24/2014 08/31/2014
35 Liberty Mutual Group - Fire Peril Loss Cost 25,000 14,751 634 07/08/2014 09/02/2014
36 Tradeshift Text Classification 5,000 4,632 296 10/02/2014 11/10/2014
37 Driver Telematics Analysis 30,000 36,065 1,528 12/15/2014 03/16/2015
38 Diabetic Retinopathy Detection 100,000 7,002 661 02/17/2015 07/27/2015
39 Click-Through Rate Prediction 15,000 27,202 1,417 11/18/2014 02/09/2015
40 Otto Group Product Classification Challenge 10,000 34,300 2,734 03/17/2015 05/18/2015
41 Crowdflower Search Results Relevance 20,000 23,237 1,326 05/11/2015 07/06/2015
42 Avito Context Ad Clicks 20,000 5,317 360 06/02/2015 07/28/2015
43 ICDM 2015: Drawbridge Cross-Device Connections 10,000 2,355 340 06/01/2015 08/24/2015
44 Caterpillar Tube Pricing 30,000 23,834 1,187 06/29/2015 08/31/2015
45 Liberty Mutual Group: Property Inspection Prediction 25,000 40,594 2,054 07/06/2015 08/28/2015
46 Coupon Purchase Prediction 50,000 18,477 1,076 07/16/2015 09/30/2015
47 Springleaf Marketing Response 100,000 34,861 1,914 08/14/2015 10/19/2015
48 Truly Native? 10,000 3,222 274 08/06/2015 10/14/2015
49 Rossmann Store Sales 35,000 58,915 2,861 09/30/2015 12/14/2015
50 Homesite Quote Conversion 20,000 28,571 1,334 11/09/2015 02/08/2016
51 Prudential Life Insurance Assessment 30,000 42,336 2,452 11/23/2015 02/15/2016
52 BNP Paribas Cardif Claims Management 30,000 48,442 2,702 02/03/2016 04/18/2016
53 Home Depot Product Search Relevance 40,000 32,937 1,935 01/18/2016 04/25/2016
54 Santander Customer Satisfaction 60,000 93,031 5,117 03/02/2016 05/02/2016
55 Expedia Hotel Recommendations 25,000 22,709 1,974 04/15/2016 06/10/2016
56 Avito Duplicate Ads Detection 20,000 8,134 548 05/06/2016 07/11/2016
57 Draper Satellite Image Chronology 75,000 2,734 401 04/29/2016 06/27/2016

Table A.1: Summary of the Competitions in the Data (Full List)

Note: The table only considers submissions that received a score. The total reward is measured in US
dollars at the moment of the competition.
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µ SE λ SE σ SE logL(δ̂)/N N

unimelb 2.2669 0.2902 57.5123 1.542 0.016 0.0005 -2.2235 1391
RTA 1.5828 0.1624 55.2645 1.426 0.0135 0.0005 -1.9971 1502
ChessRatings2 2.9122 0.6512 49.9269 2.1465 0.0044 0.0003 -2.4638 541
hhp 2.585 0.1701 191.9182 1.6088 0.0089 0.0004 -3.809 14231
wikichallenge 2.4171 0.5405 63.4633 2.6914 0.0098 0.0005 -2.6282 556
ClaimPredictionChallenge 2.1404 0.5191 70.954 2.9311 0.0018 0.0003 -2.7177 586
dunnhumbychallenge 2.1786 0.3112 43.0186 1.4799 0.0133 0.0005 -1.5467 845
GiveMeSomeCredit 1.8283 0.1175 60.4017 0.9488 0.014 0.0004 -1.9153 4053
DontGetKicked 1.9281 0.1919 87.912 1.5388 0.0064 0.0003 -2.856 3264
AlgorithmicTradingChallenge 4.2848 1.1063 60.5909 2.5423 0.0021 0.0002 -3.0526 568
WhatDoYouKnow 2.5017 0.4906 59.9231 2.2649 0.0069 0.0004 -3.1705 700
PhotoQualityPrediction 2.292 0.367 26.7708 1.1353 0.0044 0.0003 -1.5272 556
benchmark-bond-trade-price-challenge 3.104 0.5173 60.6621 1.7842 0.0103 0.0005 -2.2271 1156
kddcup2012-track1 2.9802 0.2409 99.8329 1.1439 0.0051 0.0003 -3.7538 7617
kddcup2012-track2 2.3884 0.3927 129.954 2.4908 0.0003 0.0001 -3.1547 2722
bioresponse 2.0325 0.1887 79.5422 1.2726 0.0049 0.0003 -2.988 3907
online-sales 2.2939 0.2742 46.2428 1.1645 0.0054 0.0003 -2.3825 1577
MusicHackathon 3.8714 0.5974 18.0368 0.7602 0.0023 0.0002 -1.7897 563
belkin-energy-disaggregation-competition 2.3403 0.6491 118.6425 4.4124 0.0034 0.0003 -3.5879 723
MerckActivity 2.5245 0.3435 52.7299 1.2958 0.0014 0.0002 -2.2825 1656
us-census-challenge 2.1093 0.2723 54.9508 1.5675 0.0226 0.0007 -2.2713 1229
amazon-employee-access-challenge 2.5541 0.1252 49.1849 0.5004 0.0087 0.0003 -2.1492 9663
whale-detection-challenge 2.1498 0.2925 55.8479 1.4282 0.002 0.0002 -2.829 1529
the-seeclickfix-311-challenge 2.5648 0.5884 40.8782 1.9122 0.0015 0.0002 -2.2612 457
kdd-cup-2013-author-disambiguation 2.6885 0.5488 69.1264 2.1666 0.0009 0.0002 -3.1262 1018
predict-who-is-more-influential-in-a-social-network 2.9345 0.476 44.2838 1.4482 0.011 0.0005 -2.0247 935
expedia-personalized-sort 2.3917 0.3088 45.2652 1.1742 0.0033 0.0003 -2.1829 1486
stumbleupon 2.6926 0.209 51.8293 0.7768 0.0059 0.0003 -2.3562 4452
yandex-personalized-web-search-challenge 1.7677 0.2831 116.9086 2.8313 0.0028 0.0003 -3.4408 1705
see-click-predict-fix 1.8173 0.1905 70.48 1.3438 0.0019 0.0002 -2.9384 2751
allstate-purchase-prediction-challenge 1.9856 0.1276 125.4499 1.1689 0.0009 0.0001 -2.6272 11519
higgs-boson 2.3698 0.114 122.1003 0.8177 0.0043 0.0002 -3.6653 22298
acquire-valued-shoppers-challenge 2.0772 0.1316 165.2723 1.2866 0.0032 0.0002 -3.846 16500
avito-prohibited-content 2.5922 0.3953 106.7729 2.0667 0.0009 0.0001 -3.6088 2669
liberty-mutual-fire-peril 3.3432 0.3202 122.5353 1.3388 0.001 0.0001 -3.7003 8377
tradeshift-text-classification 3.1365 0.3983 62.5714 1.2269 0.0007 0.0001 -2.5175 2601
axa-driver-telematics-analysis 2.4434 0.1408 127.4859 0.8925 0.0003 0.0001 -3.3961 20405
diabetic-retinopathy-detection 1.8353 0.2148 102.5382 1.9395 0.0067 0.0004 -2.3459 2795
avazu-ctr-prediction 3.2065 0.1981 109.0486 0.8983 0.0026 0.0002 -3.9573 14735
otto-group-product-classification-challenge 3.2732 0.1397 55.4236 0.3993 0.0005 0.0001 -2.2785 19269
crowdflower-search-relevance 2.2697 0.1163 79.1331 0.6272 0.0047 0.0003 -3.193 15919
avito-context-ad-clicks 1.8973 0.2191 81.359 1.5907 0.0035 0.0003 -3.3652 2616
icdm-2015-drawbridge-cross-device-connections 2.1009 0.3454 57.1866 1.7615 0 0.0002 -2.6684 1054
caterpillar-tube-pricing 3.2701 0.1758 68.2329 0.5562 0.0025 0.0002 -3.0241 15047
liberty-mutual-group-property-inspection-prediction 3.1055 0.1152 67.0227 0.4112 0.0047 0.0002 -2.8525 26573
coupon-purchase-prediction 2.0586 0.1093 73.1853 0.6539 0.005 0.0003 -1.5545 12526
springleaf-marketing-response 3.0405 0.1689 97.3279 0.7153 0.0014 0.0001 -2.9404 18513
dato-native 4.5328 0.7891 50.8066 1.4157 0 0.0001 -2.6522 1288
rossmann-store-sales 2.8735 0.0926 89.6868 0.4478 0.0068 0.0003 -2.5756 40105
homesite-quote-conversion 2.4958 0.1548 128.5381 0.9678 0.0035 0.0002 -3.3492 17638
prudential-life-insurance-assessment 2.16 0.0799 78.0741 0.4707 0.0068 0.0003 -2.7802 27512
bnp-paribas-cardif-claims-management 2.6826 0.0903 63.8265 0.3564 0.0036 0.0002 -3.1061 32069
home-depot-product-search-relevance 2.4158 0.1501 124.638 0.9775 0.0032 0.0002 -3.5879 16258
santander-customer-satisfaction 2.3098 0.0563 75.1579 0.3048 0.0037 0.0002 -3.108 60816
expedia-hotel-recommendations 2.2792 0.086 43.2208 0.3422 0.0042 0.0003 -1.7432 15948
avito-duplicate-ads-detection 3.6084 0.4866 108.5597 1.6678 0.0004 0.0001 -3.0469 4237
draper-satellite-image-chronology 3.0412 0.4177 53.1792 1.4238 0.007 0.0004 -2.6678 1395

Table A.4: Maximum Likelihood Estimates of the Cost and Arrival Distributions

Note: The model is estimated separately for each contest. Asymptotic standard errors are reported in
the columns that are labeled ‘SE.’ iv



Type 1 Type 2
θmean1 θst.dev1 κ1 θmean2 θst.dev2 κ2 logL(θ̂, κ̂)/N N

unimelb 0.907 0.0469 0.7457 0.3726 0.8017 0.2543 0.8585 1391
RTA 0.6004 0.154 0.679 0.6802 0.4909 0.321 -0.039 1502
ChessRatings2 0.5928 0.0842 0.7497 1.0411 0.1358 0.2503 0.5446 541
hhp 0.6691 0.083 0.657 0.4792 0.5619 0.343 0.3912 14231
wikichallenge 0.7396 0.0976 0.4654 0.617 0.263 0.5346 0.3319 556
ClaimPredictionChallenge 1.4295 0.5305 0.7111 0.3407 0.5064 0.2889 -1.0757 586
dunnhumbychallenge 1.0098 0.2109 0.7482 0.7466 0.2988 0.2518 -0.0454 845
GiveMeSomeCredit 0.519 0.0167 0.7795 0.3599 0.4358 0.2205 2.0494 4053
DontGetKicked 0.7419 0.0699 0.5768 0.7251 0.2224 0.4232 0.6483 3264
AlgorithmicTradingChallenge 0.8133 0.1532 0.7088 0.6172 0.209 0.2912 0.2639 568
WhatDoYouKnow 0.7753 0.1413 0.6434 0.6322 0.253 0.3566 0.2662 700
PhotoQualityPrediction 0.5873 0.0452 0.6808 0.5146 0.1076 0.3192 1.3044 556
benchmark-bond-trade-price-challenge 0.7618 0.1422 0.2868 0.8932 0.3061 0.7132 -0.1002 1156
kddcup2012-track1 0.6891 0.1721 0.7095 0.5523 0.7572 0.2905 -0.2329 7617
kddcup2012-track2 0.8914 0.151 0.4495 0.6644 0.2643 0.5505 0.0459 2722
bioresponse 0.7804 0.1344 0.5065 0.6357 0.2731 0.4935 0.1555 3907
online-sales 0.8445 0.118 0.6402 0.6456 0.2928 0.3598 0.3067 1577
MusicHackathon 0.9258 0.1397 0.7245 0.6437 0.247 0.2755 0.2255 563
belkin-energy-disaggregation-competition 0.4018 0.358 0.5898 1.3458 1.7243 0.4102 -1.0911 723
MerckActivity 0.6978 0.1448 0.5714 0.5709 0.245 0.4286 0.2189 1656
us-census-challenge 0.8083 0.2064 0.1507 0.916 0.5135 0.8493 -0.6594 1229
amazon-employee-access-challenge 0.7551 0.0567 0.6302 0.545 0.4323 0.3698 0.6967 9663
whale-detection-challenge 0.6904 0.0603 0.5873 0.6346 0.1204 0.4127 1.0703 1529
the-seeclickfix-311-challenge 0.954 0.0386 0.2673 0.7401 0.2573 0.7327 0.2535 457
kdd-cup-2013-author-disambiguation 1.5339 0.2196 0.2452 0.8268 0.5049 0.7548 -0.7533 1018
predict-who-is-more-influential-in-a-social-network 0.6743 0.0559 0.5779 0.6192 0.1644 0.4221 0.9089 935
expedia-personalized-sort 0.9385 0.2123 0.6802 0.7981 0.5742 0.3198 -0.2242 1486
stumbleupon 0.6369 0.0678 0.6529 0.5653 0.288 0.3471 0.7431 4452
yandex-personalized-web-search-challenge 1.0392 0.7247 0.9036 0.7315 0.2634 0.0964 -1.0347 1705
see-click-predict-fix 0.7567 0.0543 0.6962 0.5926 0.3231 0.3038 0.9078 2751
allstate-purchase-prediction-challenge 0.5038 0.0104 0.8313 0.4071 0.2553 0.1687 2.6755 11519
higgs-boson 0.6632 0.0738 0.7253 0.4505 0.463 0.2747 0.6744 22298
acquire-valued-shoppers-challenge 0.8254 0.1894 0.4967 0.5916 0.545 0.5033 -0.3439 16500
avito-prohibited-content 0.4834 0.0181 0.6585 0.4445 0.0691 0.3415 2.1097 2669
liberty-mutual-fire-peril 0.7387 0.1754 0.6447 0.5652 0.3024 0.3553 0.0656 8377
tradeshift-text-classification 0.8188 0.141 0.4289 0.6122 0.2731 0.5711 0.0676 2601
axa-driver-telematics-analysis 1.0063 0.1863 0.4779 0.8082 0.4058 0.5221 -0.1938 20405
diabetic-retinopathy-detection 1.2998 0.3702 0.7685 0.783 0.5386 0.2315 -0.6156 2795
avazu-ctr-prediction 0.5778 0.1829 0.803 0.699 0.3436 0.197 0.2071 14735
otto-group-product-classification-challenge 0.7953 0.1462 0.5697 0.6681 0.3331 0.4303 0.0973 19269
crowdflower-search-relevance 0.6626 0.1138 0.5625 0.51 0.3922 0.4375 0.1954 15919
avito-context-ad-clicks 1.0044 0.5639 0.7838 0.7382 0.2659 0.2162 -0.7511 2616
icdm-2015-drawbridge-cross-device-connections 1.4725 0.058 0.166 1.0204 0.3095 0.834 -0.2142 1054
caterpillar-tube-pricing 0.5999 0.0491 0.6027 0.4656 0.3495 0.3973 0.8037 15047
liberty-mutual-group-property-inspection-prediction 0.7789 0.1128 0.4056 0.5568 0.362 0.5944 0.2598 26573
coupon-purchase-prediction 0.7612 0.0031 0.1434 0.6923 0.5603 0.8566 0.2596 12526
springleaf-marketing-response 0.8079 0.1112 0.5603 0.6637 0.3488 0.4397 0.2251 18513
dato-native 0.6084 0.0572 0.7182 0.6883 0.0128 0.2818 1.5161 1288
rossmann-store-sales 0.65 0.1158 0.5893 0.4968 0.3264 0.4107 0.3807 40105
homesite-quote-conversion 0.5534 0.0647 0.5543 0.5752 0.2611 0.4457 0.6504 17638
prudential-life-insurance-assessment 0.7326 0.066 0.6366 0.5313 0.3874 0.3634 0.6549 27512
bnp-paribas-cardif-claims-management 0.5812 0.1488 0.638 0.5601 0.488 0.362 -0.0302 32069
home-depot-product-search-relevance 0.6521 0.2161 0.5194 0.8518 0.4976 0.4806 -0.4202 16258
santander-customer-satisfaction 0.4604 0.0949 0.785 0.326 0.3797 0.215 2.2061 60816
expedia-hotel-recommendations 0.4196 0.5705 0.3425 0.6816 0.0123 0.6575 1.8104 15948
avito-duplicate-ads-detection 0.928 0.0937 0.6124 0.7649 0.329 0.3876 0.4461 4237
draper-satellite-image-chronology 0.0118 0.3054 0.4991 1.4943 1.0653 0.5009 -1.24 1395

Table A.5: EM Algorithm Estimates for the Type-specific Distribution of Scores, qθ.

Note: The model is estimated separately for each contest. θst.devi and θst.devi are the parameters in type
i’s distribution of scores Qi(s) = Φ

(
s−θst.dev

i

θst.dev
i

)
. κi is the fraction of players of type θi. logL(θ̂, κ̂)/N is

the value of the log-likelihood function evaluated at the EM estimates. Standard errors are available.
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α SE β SE logL(δ̂)/N
unimelb -0.0055 0.0305 0.993 0.0316 1391
RTA -0.0479 0.0298 0.9651 0.0363 1502
ChessRatings2 -0.0121 0.0799 1.0182 0.1064 541
hhp -0.0055 0.009 0.9941 0.0102 14231
wikichallenge -0.0052 0.0477 1.0017 0.0593 556
ClaimPredictionChallenge 0.0477 0.0512 0.8792 0.0416 586
dunnhumbychallenge 0.003 0.046 0.9766 0.0471 845
GiveMeSomeCredit 0.0014 0.017 0.9961 0.0224 4053
DontGetKicked 0.0065 0.0233 0.9979 0.0285 3264
AlgorithmicTradingChallenge 0.0801 0.0511 0.7757 0.0595 568
WhatDoYouKnow -0.0062 0.0543 1.0049 0.0686 700
PhotoQualityPrediction 0.0041 0.0547 0.9981 0.0807 556
benchmark-bond-trade-price-challenge -0.0207 0.0404 1.0488 0.0464 1156
kddcup2012-track1 -0.2673 0.0119 0.7731 0.0122 7617
kddcup2012-track2 0.0045 0.0212 1.0108 0.0243 2722
bioresponse -0.0324 0.0188 0.9517 0.0221 3907
online-sales 0.0049 0.0316 0.9882 0.0366 1577
MusicHackathon -0.0002 0.0514 1.0002 0.0551 563
belkin-energy-disaggregation-competition -0.29 0.038 0.4271 0.02 723
MerckActivity 0.0049 0.0265 0.9924 0.0305 1656
us-census-challenge 0.0001 0.0324 0.998 0.0326 1229
amazon-employee-access-challenge -0.0084 0.0121 1.0035 0.0148 9663
whale-detection-challenge -0.0009 0.033 1.002 0.044 1529
the-seeclickfix-311-challenge -0.0027 0.0598 1.002 0.0689 457
kdd-cup-2013-author-disambiguation -0.0002 0.0369 1.0014 0.0321 1018
predict-who-is-more-influential-in-a-social-network -0.0185 0.0404 1.0231 0.0568 935
expedia-personalized-sort 0.0004 0.0333 1.0024 0.0341 1486
stumbleupon -0.0134 0.0169 0.9552 0.0222 4452
yandex-personalized-web-search-challenge -0.0083 0.0258 1.0035 0.0238 1705
see-click-predict-fix -0.0004 0.0217 1.0004 0.0255 2751
allstate-purchase-prediction-challenge -0.002 0.0105 0.9994 0.015 11519
higgs-boson -0.002 0.0074 0.9935 0.0089 22298
acquire-valued-shoppers-challenge -0.0058 0.0082 0.9962 0.0087 16500
avito-prohibited-content -0.0002 0.0215 1 0.0306 2669
liberty-mutual-fire-peril -0.0057 0.0121 0.9613 0.0144 8377
tradeshift-text-classification 0.0002 0.022 0.9969 0.026 2601
axa-driver-telematics-analysis -0.0013 0.0082 1.0003 0.0085 20405
diabetic-retinopathy-detection -0.0017 0.0296 0.9984 0.0248 2795
avazu-ctr-prediction 0.0006 0.0096 0.9993 0.0127 14735
otto-group-product-classification-challenge 0.0024 0.0084 0.9968 0.01 19269
crowdflower-search-relevance -0.0005 0.0085 0.9885 0.0104 15919
avito-context-ad-clicks 0.0054 0.0217 0.9988 0.0196 2616
icdm-2015-drawbridge-cross-device-connections -0.0007 0.0436 1.0023 0.0413 1054
caterpillar-tube-pricing 0.0012 0.0086 0.9997 0.0104 15047
liberty-mutual-group-property-inspection-prediction -0.0108 0.0066 0.9862 0.0078 26573
coupon-purchase-prediction -0.0187 0.0094 0.9515 0.0092 12526
springleaf-marketing-response 0.0042 0.0086 1.0064 0.0101 18513
dato-native -0.0088 0.0404 1.0015 0.0592 1288
rossmann-store-sales -0.0475 0.0055 0.9825 0.0071 40105
homesite-quote-conversion -0.0005 0.0084 0.9932 0.011 17638
prudential-life-insurance-assessment -0.0054 0.0071 0.9949 0.0094 27512
bnp-paribas-cardif-claims-management -0.0011 0.006 0.9959 0.0072 32069
home-depot-product-search-relevance 0.0013 0.0092 1.0022 0.0096 16258
santander-customer-satisfaction 0.0008 0.0044 1 0.0062 60816
expedia-hotel-recommendations -0.0006 0.0084 0.9996 0.0102 15948
avito-duplicate-ads-detection -0.0017 0.0191 0.999 0.0216 4237
draper-satellite-image-chronology -0.1409 0.0283 0.6141 0.0202 1395

Table A.6: Maximum Likelihood Estimates of the Distribution of Private Scores
Conditional on Public Scores.

Note: The Conditional Distribution is Assumed to be Given by pprivate = α + βppublic + ε, with ε

Distributed According to a Double Exponential Distribution. The model is estimated separately for
each contest. Asymptotic standard errors are reported in the columns that are labeled ‘SE.’
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(1) (2)
Total effect (nlb − nno lb) Information Disclosure (nlb − n′no lb)

σ 3.1115∗∗ 4.1751∗∗∗

(1.5024) (1.5132)

µ -1.1838 0.1040
(1.9585) (1.9743)

λ 1.5729 1.1141
(1.6473) (1.6273)

κhigh type -0.5753 -1.2530
(2.7958) (3.0412)

θst.devhigh type 4.9351∗∗ 5.1694∗∗

(2.0355) (2.0304)

θst.devlow type 0.3288 0.4106
(2.8737) (2.9349)

θmeanhigh type -3.5381 -3.4160
(3.8722) (3.9662)

θmeanlow type -3.3526∗ -3.2002∗

(1.7289) (1.7808)
Observations 57 57
R2 0.285 0.298

Table A.7: Explaining the impact of the leaderboard on contest outcomes

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation
is a contest. Total effect is the difference in the average number of submissions by a team with a
leaderboard and without a leaderboard. Information disclosure is the difference between the average
number of submissions by a team in the equilibrium with a leaderboard and the average number of
submissions by the same team when this team that does not observe the leaderboard but knows that all
other teams observe the leaderboard. All independent variables are measured in standard deviations.
σ is the parameter of the cost distribution; µ is the arrival rate of new players; λ is the parameter of
the distribution of time between submissions; κhigh type is the share of high-type players; θst.devj and
θmeanj are the standard deviation and mean of the distribution of scores of players of type θj . Type θi
is defined as the high-type if θmeani + 3θst.devi > θmeanj + 3θst.devj .
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Figure A.1: Correlation between µ (arrival rate of new teams) and λ (arrival rate of
new submissions)

Note: The estimates of λ and µ are reported in Table A.4. The coefficient of correlation between λ
and µ is -0.18.
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Figure A.2: Value of Information versus total effect of hiding a leaderboard

viii



B Estimation Details

In this section, we provide an overview of the estimation procedure used to estimate
the primitives of the model.

B.1 Distribution of entry times

We assume that the time at which a player enters a competition follows an exponential
distribution with a contest-specific parameter, µ. Given the vector of entry times for
the set of players I in a given contest, {ti}i∈I , we estimate µ by using the maximum
likelihood estimator:

µ̂ = arg max logL(µ) = arg max
∑
i∈I

log(µ)− µti = 1
t̄
,

where t̄ = ∑
i∈I ti/|I|.

B.2 Distribution of time between submissions

We assume that the time between submissions follows an exponential distribution with
a contest-specific parameter, λ. Given the vector of times between submissions for the
set of players I in a given contest, {ti,m}m∈Mi,i∈I , we estimate λ by using the maximum
likelihood estimator:

λ̂ = arg max logL(λ) = arg max
∑
i∈I

∑
m∈Mi

log(λ)− λti,m = 1
t̄
,

where t̄ = ∑
i∈I
∑
m∈Mi

ti,m/|{ti,m}m∈Mi,i∈I |.

B.3 Type-specific distribution of scores

We assume that each player is of one of two types: θ1 or θ2. The fraction of players of
type θj is κj, with κ1+κ2 = 1. Each type j draws scores from a type-specific distribution

ix



of scores, f(·|θj). We assume f(·|θj) is the density function of a normal distribution with
mean θmeanj and standard deviation θst.devj . We define θ = {θj = (θmeanj , θst.devj )}j=1,2

and κ = {κj}j=1,2.

Using the distributions f(·|θ1) and f(·|θ2) and player i’s observed scores si = {si1, . . . , siMi
},

the posterior probability that player i is of type θj ∈ Θ is given by

h(θj|si) = κj
∏Mi
m=1 f(sim|θj)∑

k∈Θ κk
∏Mi
m=1 f(sim|θk)

, (5)

where we make use of Bayes’ identity.

We use the EM algorithm to find the maximum likelihood estimates of θ and κ. The
EM algorithm is an iterative method, where each iteration consists of computing an
expectation and then maximizing the expectation with respect to θ and κ, and these
steps are repeated until convergence of the vector of parameters (see Hastie et al. 2009
for more details).

Iteration t+1 makes use of the estimates of iteration t: θt,κt. The expectation is given
by

E(θ,κ|θt,κt) =
∑
i

∑
θk∈Θ

∑
m∈Mi

h(θk|si,θt,κt) log(κkf(sim|θk)).

Given (θt,κt), E(θ,κ|θt,κt) has a unique maximum given by (θt+1,κt+1). Given our
assumptions, one can obtain an analytic solution for (θt+1,κt+1). The estimates of
the model are obtained by iterating over the expectation and maximization steps until
convergence of the estimates: ρ((θt,κt), (θt+1,κt+1)) < ε, where ρ(·) is the Euclidean
metric. We use a tolerance level of 1E-8.25

When implementing the EM algorithm, we only use three scores for each player i in
a given contest. We restrict the set of scores si of player i to player i’s median score,
player i’s 75th percentile score, and player i’s maximum score.

25Alternatively, we can iterate until the log-likelihood converges.
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B.3.1 Classifying players

For the purposes of our empirical model, we assign a type to each player of each contest
in the data. We classify players using the estimates of θ and κ, which fully characterize
the distribution of types and the distribution of scores of each type, and the vector of
scores of each player. Specifically, we use the posterior probability of player i being
of type θj in Equation 5, which makes use of the estimates of θ and κ and the vector
of scores of player i, si, which we define as player i’s median score, player i’s 75th
percentile score, and player i’s maximum score. Using these posterior probabilities, we
classify player i as being of type θ1 if h(θ1|si) > h(θ2|si) and of type 2 otherwise. That
is, we use the Bayes classifier, which minimizes expected prediction error (Hastie et al.,
2009).

B.4 Conditional distribution of the private scores

We assume that the relationship between private and public scores is given by pprivate =
α + βppublic + ε, where ε is distributed according to a standard double exponential
distribution, and α and β are contest-specific parameters. Given the pairs of scores for
all M submissions in a contest, {(ppublicm , pprivatem )}m∈M , we estimate (α, β) by using the
maximum likelihood estimator:

(α̂, β̂) = arg max logL(α, β) = arg max
∑
m∈M

−εm + exp{−εm},

where εm = pprivatem − α− βppublicm .

B.5 Estimating the distribution of costs

Players decide to build a new submission if the benefits are greater than the cost of
building a new submission. The distribution of costs is identified based on how variation
in the benefits of building a new submission changes the decision of a player to build a
new submission. We compute the benefits of building a new submission via simulation,
and use these simulated benefits to compute the maximum likelihood estimates of the
cost distribution.
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Simulating the benefits of building a new submission require estimates of all primitives
of the model except for the distribution of costs as well as estimates of the equilibrium
conditional choice probabilities (CCPs). We first discuss how we estimate the CCPs
and then discuss how we simulate the benefits of building a new submission.

B.5.1 Conditional Choice Probabilities (CCPs)

The object of interest is Pr(play|s, t, θ), where s is a vector of state variables, t is time,
and θ is player type. We estimate these probabilities using data on both decisions to
build a new submission and state variables (e.g., scores on the leaderboard). At this
point, we make some assumptions about the information in the public leaderboard that
players consider relevant. Specifically, we assume that a player at time t keeps track
of time, her own maximum score up to time t, and the top 10 highest scores on the
leaderboard up to that time. We found that incorporating additional variables added
little explanatory power to our model.

We then approximate the CCPs using the function

Pr(play|s, t, θ) = exp{f(s, t, δθ)}
1 + exp{f(s, t, δθ)}

, (6)

where f(·) is a flexible function of s and t, and θ, and δθ is a vector of parameters that
is specific to player type θ. We estimate {δθ}θ∈Θ using a maximum likelihood estimator.
We model f(s, t, δθ) as

f(s, t, δθ) = [1, t, t2, t3, team_max_score, team_max_score2, team_max_score · t,

Y, Y ∗ Y, Y · t, top1, top3, top10, top1 · t, top3 · t, top10 · t]′δθ,

where team_max_score is the player’s maximum score up to time t, Y is the vector of
the 10 highest scores on the leaderboard up to time t, top1 is an indicator for whether
the player is in the first position of the leaderboard, top3 is an indicator for whether the
player is in positions 2 or 3 of the leaderboard, and top10 is an indicator for whether
the player is in positions 4 to 10 of the leaderboard.

The likelihood is constructed using tuples {(si, ti, t′i, θi)}i∈N , where i is a submission,
si is the vector of state variables at the moment of making the submission, ti is the
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submission time, and t′i is the arrival time of the next submission, which may or may not
be observed, and θi is player type. If the next submission is observed, then ti < t′i ≤ T ,
if not, t′i > T . If the new submission arrives at t′i ≤ T , then the player must have chosen
to make a new submission at ti, and the likelihood of the observation (si, ti, t′i, θi) is
given by l(si, ti, t′i, θi) = Pr(play|si, ti, θi) · λe(−λ(t′i−ti)), where λe(−λ(t′i−ti)) is the density
of the submission arrival time. If we do not observe a new submission after the player’s
decision at time t (i.e., t′i > T ), then the likelihood of (si, ti, t′i > T, θi) is given by
l(si, ti, t′i > T, θi) = Pr(play|si, ti, θi) · e(−λ(T−ti)) + 1−Pr(play|si, ti, θi), which considers
both the events of i) the player choosing to make a new submission at ti and the
submission arriving after the end of the contest; and ii) the event of the player choosing
not to make a new submission.

B.5.2 Benefits of building a new submission

For every (s, t, θ) in the data, we simulate NS = 200 continuation histories of the game
under two cases: the player chooses to build a new submissions (d = Play) and the
player chooses not to build a new submission (d = Not Play). Histories are simulated
using estimates for all primitives of the model (except for the distribution of costs) and
the CCPs. For every simulated history, we compute the payoff of the player at the end
of the game. For simplicity, we assume that every competition is a winners-take-all
contest. The simulated benefit of action d given state variables (s, t, θ) is then the
average payoff at the end of the game across all simulated histories that follow decision
d.

C Description of the Experiment

Description of the Competition

A large restaurant chain owns restaurants located along major highways. The average
revenue of a restaurant located at distance x from the highway is R(x). For simplicity,
the variable distance to the highway is normalized to be in the interval [1,2]. The
function R(x) is unknown. The goal of this competition is to predict the value of R(x)
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for several values of distances to the highway. Currently, the restaurant chain is located
at 40 different locations. You will have access to

{(xi, R(xi))}30
i=1,

i.e., the distance to the highway and average revenue for 30 of these restaurants. Using
these data, you must submit a prediction of average revenue for the remaining 10
restaurants, using their distances to the highway.

You will find the necessary datasets in the Data tab. You can send up to 10 different
submission each day until the end of the competition. The deadline of the competition
is Sunday April 15th at 23:59:59.

Evaluation

We will compare the actual revenue and the revenue predictions for each value

(xj)40
j=31.

The score will be calculated according to the Root Mean Square Deviation:

RMSD =

√√√√∑40
j=31(R̂(xj)−R(xj))2

10 ,

which is a measure of the distance between your predictions and the actual values R(x).
The deadline of the competition is Sunday April 15th at 23:59:59.

Note. Following the convention used throughout the paper, we multiplied the RSMD

scores by minus one to make the winning score maximize private score in the competi-
tion.

Description of the Data

The goal of this competition is to predict the value of R(x) for a number of values
of distance to the highway. The csv file “train” contains data on the distance to the
highway and average revenue for 30 restaurants

{(xi, R(xi))}30
i=1,
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You can use these data to create predictions of average revenue for the remaining 10
restaurants. For these 10 restaurants you only observe their distances to the highway
in the csv file “test.” You can find an example of how your submission must look like
in the csv file “sample_submission.”

File descriptions:

• train.csv - the training set
• test.csv - the test set
• sample_submission.csv- an example of a submission file in the correct format

Submission File:
The submission file must be in csv format. For every distance to the highway of the 10
restaurants, your submission files should contain two columns: distance to the highway
(x) and average revenue prediction (R). The file should contain a header and have the
following format:

x R
1.047579 34.43375
1.926801 36.83077

etc.

A correct submission must be a csv file with one row of headers and 10 rows of numerical
data, as displayed above. To ensure that you are uploading your predictions in the
correct format, we recommend that you upload your predictions by editing the sample
submission file. There is a limit of 10 submissions per day.

Figure A.3 shows a screenshot of the leaderboard in one of our student competitions
hosted in Kaggle.
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Figure A.3: Snapshot of the leaderboard in one of our competitions with a leader-
board. Names are hidden for privacy reasons.
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