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Abstract

Firms and government agencies increasingly use online contests to find solutions to
problems. These contests allow players to make multiple attempts, and their progress is
tracked on a real-time public leaderboard. Although the contests are dynamic, contest
sponsors miss the opportunity to dynamically shape players’ incentives, as they award
the entire prize pool based only on players’ final rankings. We propose the use of
contingent prizes that depend on the game’s history to incentivize players throughout
the contest. We present evidence from two methodologies—a structural model and an
RCT—showing that contingent prizes can significantly improve contest outcomes.
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1 Introduction

Firms and government agencies are increasingly using online contests to procure solutions
to problems. In particular, platforms hosting online data-science competitions have gained
popularity over the last decade.1 These competitions are dynamic: players try many attempts
before a pre-determined deadline, and a public leaderboard discloses their performance in
real time. Notably, these competitions only reward players based on their final rankings,
which we argue is a missed opportunity to shape incentives during the contest and improve
participants’ performance. We study contingent prizes—pre-announced prize allocation rules
based on a contest’s history—which give the contest designer additional tools for motivating
players throughout the contest.2 Specifically, we ask, should interim leaders in a contest
receive prizes? Should the contest sponsor set milestones? How much money is left on the
table by only awarding prizes based on final rankings?

Our contribution is to empirically investigate the impact of contingent prizes on performance,
measured as the best submission in the contest. Our results suggest that contest sponsors
are wasting resources by awarding prizes based only on final rankings, overlooking the role
of contingent prizes in shaping players’ incentives. We quantify the gains from using simple
contingent prizes—e.g., splitting the budget to reward interim leaders or rewarding the first
player who surpasses a milestone—and show that they can achieve the same performance as
a prize based only on final rankings, using merely half of the budget.

Contingent prizes can dynamically motivate players to make costly submissions by managing
two salient economic forces influencing players’ incentives during the competition. First, it
may be unlikely to become the competition’s leader at the current time after making a sub-
mission (the “current-competition” effect). Second, even if a player becomes the competition
leader at the current time, she anticipates that future submissions by her rivals will threaten
her lead (the “future-competition” effect). The current-competition effect is most discourag-
ing near the end of the competition, when most opportunities to improve scores have been
exhausted. In contrast, the future-competition effect is most discouraging at the beginning
of the competition, when many rival submissions are yet to come.

1Many platforms allow firms or government agencies to sponsor online competitions, including Kaggle,
DrivenData, CodaLab, InnoCentive, AIcrowd, and Topcoder. As of October 2023, Kaggle has over 15 million
registered users, has hosted over 5,000 competitions, and paid millions of dollars in prizes to participants in
competitions sponsored by Google, American Express, Expedia, General Eletric, Intel, and Airbus.

2Some dynamic contests award prizes contingent on milestones or to interim leaders. For instance, the
XPRIZE Carbon Removal competition, the largest incentive prize in history, splits a $100 million budget
over time: After one year of competition, up to 15 competitors will receive prizes of $1 million each. At the
end of the competition, the winner will get $50 million, and three runner-ups will share $30 million.
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Figure 1 illustrates these forces in a contest with a prize structure that only rewards the
competition leader based on the final ranking (henceforth, a “final-ranking” prize). The figure
shows the probability of making a submission at different times, while keeping a constant
maximum score throughout the competition. The solid (dashed) line corresponds to the
probability of a submission when the maximum score is fixed at a low (high) score. The solid
line lies above the dashed line because the probability of a submission at any given time is
higher when the current maximum score is lower. This difference captures the discouragement
effect of the maximum score, i.e., the current-competition effect. Moving along either curve,
the probability of a submission increases over time; both curves slope upwards. Part of this
effect is explained by future competition, which discourages players from making submissions
early in the competition.

Figure 1: Probability of making a submission
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Notes: The figure plots the probability of making a submission for given parameter values. Each curve plots
this probability over time, given a maximum score (fixed over time).

Altering the importance of current- and future-competition effects throughout the contest af-
fects the equilibrium number of submissions. The decision to make a costly submission hinges
on the relative importance of the current- and future-competition effects. For instance, let us
compare a final-ranking prize with an alternative time-contingent prize structure, one that
allocates 50% of the budget to the interim leader in the first half of the competition and the
remaining 50% to the leader based on final rankings. The future-competition effect induces a
strong discouragement earlier in the contest with a final-ranking prize but milder discourage-
ment with a time-contingent prize structure. With a final-ranking prize, the interim leader
at half of the competition must endure the future competition for the remaining half of the
contest before receiving a prize. Instead, with a time-contingent prize, the interim leader
at the halfway point receives 50% of the budget regardless of the number of submissions in
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the second half of the contest. However, because players have more incentives to play early
on with a time-contingent prize, the current-competition effect will be stronger than with
a final-ranking prize. In addition to balancing the relative impact of current- and future-
competition effects through the prize structure, the contest designer must also consider the
budget constraint. Allocating a large prize early in the contest limits the maximum reward
available for the remainder of the competition.

We combine two empirical methodologies to investigate the impact of contingent prizes on
performance: structural estimation and experimental evidence. In the first part of our anal-
ysis, we estimate a structural model with observational data from Kaggle.com, the largest
platform for hosting data science competitions. In these competitions, players can make mul-
tiple submissions that are scored based on an objective criterion (e.g., prediction accuracy).
A public leaderboard displays these scores in real time, and the leader, determined by the
final ranking, receives a prize. Thus, these data allow us to estimate the structural parame-
ters of a dynamic contest where a prize is allocated based on final rankings only. Using these
estimates, we simulate the equilibrium of each contest under counterfactual prize structures.

Our analysis focuses on simple prize structures, which include rewards for interim leaders at
predetermined times, the first player to achieve a milestone, or the first player to achieve a
milestone before a predetermined time. In particular, a final-ranking prize is a simple prize
structure, as it only rewards the leader based on rankings at one specific time (at the end of the
contest). Simple prize structures are both computationally manageable and relatively easy to
implement in practice. Finding optimal, fully flexible, budget-constrained, contingent-prize
structures, however, requires solving an optimization problem with millions of variables and
an exponentially large number of constraints, making it computationally unfeasible.3 Our
decision to focus on simple prize structures is motivated by their tractability and evidence
showing that they can approximate the benefits of fully flexible contingent prize structures.
Specifically, we use the estimates of our structural model to simulate “short contests” and
find that simple prize structures capture a large fraction of the performance of the optimal
contingent prize structure in short contests. Armed with these findings, we evaluate simple
prize structures using the sample of contests in our data (i.e., the full-scale contests). In
this exercise, we compute the equilibrium of each contest under counterfactual simple prize
structures and compare it to the observed equilibrium of each contest.

More specifically, using our model estimates, for each contest, we consider seven classes
of counterfactual designs, each one corresponding to a “simple” prize structure. The first

3Specifically, there are T (T + 1) variables to optimize over and 2T constraints (histories), where T is the
number of periods in the empirical model, set at 10,000 in our baseline estimate.
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three classes of designs (“time-contingent” prizes) consider k prizes to the interim leaders
at k equally spaced times, with the size of each of the k prizes chosen optimally and k ∈
{2, 4, 6}. The fourth design (“2 timed prizes”) allocates one prize of size π to the leader of
the competition at time τ , and the rest of the budget to the leader based on final rankings.
The fifth design (“milestone”) awards the full prize pool to the first player who surpasses a
milestone score. The sixth design (“hybrid”) awards a prize to the first player who surpasses
a milestone score and another prize to the leader based on final rankings. The last design
(“elimination”) eliminates a number of players at the middle of the contest. For each contest,
we find the prize structure within each class that maximize the expected maximum score given
the contest’s primitives. For time-contingent prizes, we optimize over the size of the prizes,
πk. For 2 timed prizes, we optimize over both π and τ . For milestones, we find the optimal
milestone score. For hybrid, we optimize over both the milestone score and the final prize.
Lastly, for elimination contests, we find the optimal number of players to eliminate.

Finding optimal, simple prize structures for each contest rely on the designer knowing the
contest’s primitives, such as the contest’s difficulty, the players’ submission cost distribution,
and the distribution of scores for a given submission. However, a contest designer may
not know these primitives. To address this issue, for each class of prize structure, we find
parameters that maximize the average maximum score across all of the contests in our data.
We refer to this set of parameters as “uniform,” meaning that they are not tailored to one
specific contest but rather optimized for best performance on average. For example, the
uniform parameters for the class of two time-contingent prizes, equally spaced over time,
correspond to allocating 30% of the budget in the middle of the contest and 70% at the end.
Meanwhile, the uniform parameters for the class of 2 timed prizes correspond to allocating
25% of the budget when 68% of the contest time has elapsed and the remaining 75% of the
budget at the end of the contest.

Our estimates show that uniform parameters can achieve a significant portion of the benefits
obtained by customizing parameters for each contest. In other words, even when contest
primitives are heterogeneous, using uniform parameters can substantially enhance contest
outcomes. Furthermore, we found that by utilizing only 52 percent of the total budget, an
optimal, simple prize structure can achieve the same performance, on average, as a final-
ranking prize. This result suggests that contest sponsors, who have awarded millions of
dollars in prizes, might be missing out on potential gains by employing a sub-optimal prize
structure.

In the second part of our analysis, we complement our model-based analysis with a ran-
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domized control experiment, serving a dual purpose. First, it provides evidence of improved
contest outcomes when using contingent prizes. This experimental finding does not hinge
on our modelling choices. Second, it allows us to test whether particular contingent-prize
structures improve contest outcomes in line with our model predictions. In our experiment,
we organized competitions for students from the University of British Columbia and the Uni-
versity of Illinois. The students competed in groups of up to five in a prediction competition
on Kaggle.com. We randomly assigned each group to one of three conditions: (1) the leader
at the end of the competition received the full prize pool (baseline); (2) the leader two days
before the end of the competition received 30% of the prize pool, and the leader at the end of
the competition received the remaining 70% of the prize pool, (time-contingent prizes); (3)
the first player to surpass a milestone score received 30% of the prize pool, and the leader
at the end of the competition received the remaining 70% of the prize pool (hybrid prizes).
We designed these experimental conditions on optimal designs derived from our structural
estimation.

Our model-based and experimental evidence align in showing that contingent prizes can
significantly improve contest outcomes relative to a prize based on final standings. According
to our model estimates, a hybrid design—providing one prize to the first player to reach a
milestone score and another prize to the leader at the end of the competition—produces
the best outcomes among seven counterfactual simple prize structures. Furthermore, our
experimental results show that the hybrid prize structure generates similar gains in contest
outcomes but with larger magnitudes than our empirical model predicts.

A contingent prize can encourage players early on by reducing the future competition effect
but can discourage them by increasing the current competition effect. Our results show
that simple contingent prizes, which are easy to implement in practice, resolve this tradeoff
favorably for the designer and achieve better performance than a prize based on final rankings.

A contingent prize can motivate players in the early stages of the competition by reducing the
future competition effect, yet it may discourage them by intensifying the current competition
effect. Our results show that simple contingent prizes, which are easy to implement in
practice, resolve this tradeoff better than a prize based on final rankings only. Thus, contest
designers should carefully consider the use of contingent prizes if their goal is to achieve the
best performance.

Related Literature. Our work contributes to the recent empirical literature on dynamic
contest design. For instance, Bhattacharya (2021) studies alternative designs for the U.S.
Department of Defense’s multi-stage contests. Gross (2017) and Lemus and Marshall (2021)
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study the impact of dynamic feedback on outcomes. Our work focuses on one aspect of
contest design, contingent prizes, fixing other design dimensions, including the number of
players, contest length, evaluation rule, and information provision.

In contrast to most of the literature, we employ two complementary methodologies: structural
estimation using observational data from large contests and a randomized control trial that
provides model-free estimates. The theoretical literature has investigated several elements
of contest design, including the number of participants that should enter a contest (Taylor,
1995; Fu and Lu, 2010; Aycinena and Rentschler, 2019), or earn a prize (Moldovanu and
Sela, 2001; Olszewski and Siegel, 2020; Kireyev, 2020). In dynamic settings, researchers have
studied whether contests should be divided into multiple stages (Moldovanu and Sela, 2006;
Sheremeta, 2011) and whether participants should receive performance feedback during the
contest (Mihm and Schlapp, 2019). Moldovanu and Sela (2006), Fu and Lu (2009), Fu and
Lu (2012), Chowdhury and Kim (2017), and Clark and Nilssen (2020), among others, study
the design of both the number of stages and prizes.

As a dynamic competition unfolds, players can experience discouragement (see, e.g., Harris
and Vickers, 1987; Konrad and Kovenock, 2009). In multi-stage contests, Feng and Lu
(2018) theoretically show that optimal time-contingent prizes depend on how effort impacts
the probability of winning. Similarly, Alshech and Sela (2021) find the optimal rank-and-
time-contingent prize structure, where designer chooses a prize for the player who wins both
stages, in addition to a prize for the leader of each stage. Prize allocations have also been
studied theoretically and experimentally by Stracke et al. (2014) (under risk aversion), Cason
et al. (2020) (under noisy performance), and Güth et al. (2016) (under milestone prizes). In
a two-period model, Klein and Schmutzler (2021) show that the symmetric equilibrium with
a single prize based on final rankings achieves higher total effort than two equal prizes at
the end of each stage. They confirm this prediction in a laboratory experiment. Our model
allows for multiple periods and asymmetric players (stochastic submission costs).

Other settings have theoretically examined score-contingent prizes. For instance, in Ely et al.
(2021), the designer observes the players’ progress and chooses prizes, feedback, and when
to end the contest. The optimal design features a sequence of contests of fixed length. The
competition ends when (at least) one player surpasses an exogenous milestone score (i.e., not
set by the designer). In Benkert and Letina (2020) players privately observe their progress
and choose when to report it to the principal. The optimal prize structure makes interim
transfers to all players while the competition has not ended and rewards the first player who
reveals success upon which the contest ends. Unlike these papers, we empirically evaluate
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contingent prizes in contests with a fixed duration and a public leaderboard.

2 Data and Background Information

We use publicly available data on 57 featured competitions hosted by Kaggle.4 These compe-
titions received thousands of submissions, coming from an average of 894 players per contest,
and offered an average prize of $30,489. A partial list of competition characteristics is sum-
marized in Table 1 (see Table A.1 in the Online Appendix for the full list).5

In the competitions, participants have access to a training and a test dataset. The training
dataset includes both an outcome variable and covariates, while the test dataset only includes
covariates. The goal of the contest is to generate the most accurate predictions of the outcome
variables for the covariates in the test dataset. A submission in a contest must include an
outcome variable prediction for each observation in the test dataset. Kaggle objectively
scores each submission based on its out-of-sample performance and posts its score on a
public leaderboard. Prizes are awarded to top players based on the leaderboard ranking at
the end of the contest.6

We have contest-level information on all submissions, including the time of the submission,
who made them (team identity), and their score (public and private scores). We are able to
reconstruct both the public and private leaderboard at every time for every contest. Using
the same approach as in Lemus and Marshall (2021), we standardize the score distribution
to have a mean of zero and a standard deviation of one.

3 Empirical Model

There are N contest participants. Player i enters the contest at an exogenously given time
0 ≤ ti ≤ T , at which point the player is able to make submissions. Players have perfect
foresight regarding the entry times of rivals and stay until the end of the contest. At time

4https://www.kaggle.com/kaggle/meta-kaggle
5Lemus and Marshall (2021) provide a detailed overview of the dataset as well as descriptive evidence.
6Kaggle partitions the test dataset into two subsets and does not inform participants which observations

correspond to each subset. The first subset is used to generate the public score; the second subset is used
to generate the private score. The public score is posted in real-time on a public leaderboard, whereas the
private score is never made public during the contest. The private score is used to determine the winner of
the competition, so the public score is a noisy signal of performance. The correlation between public and
private scores is 0.99, which motivates us to abstract away from the noise in the public signals for tractability.
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Table 1: Summary of competitions (partial list of competitions)

Competition Total reward Submissions Start date Deadline
Heritage Health Prize 500,000 2,687 04/04/2011 04/04/2013
Allstate Purchase Prediction Challenge 50,000 1,204 02/18/2014 05/19/2014
Higgs Boson Machine Learning Challenge 13,000 1,776 05/12/2014 09/15/2014
Acquire Valued Shoppers Challenge 30,000 2,347 04/10/2014 07/14/2014
Liberty Mutual Group - Fire Peril Loss Cost 25,000 1,057 07/08/2014 09/02/2014
Driver Telematics Analysis 30,000 1,619 12/15/2014 03/16/2015
Crowdflower Search Results Relevance 20,000 1,645 05/11/2015 07/06/2015
Caterpillar Tube Pricing 30,000 1,938 06/29/2015 08/31/2015
Liberty Mutual Group: Property Inspection Prediction 25,000 1,271 07/06/2015 08/28/2015
Coupon Purchase Prediction 50,000 631 07/16/2015 09/30/2015
Springleaf Marketing Response 100,000 1,567 08/14/2015 10/19/2015
Homesite Quote Conversion 20,000 2,557 11/09/2015 02/08/2016
Prudential Life Insurance Assessment 30,000 818 11/23/2015 02/15/2016
Santander Customer Satisfaction 60,000 1,138 03/02/2016 05/02/2016
Expedia Hotel Recommendations 25,000 436 04/15/2016 06/10/2016

Notes: The table only considers submissions by the top 10 teams of each competition. The total reward is
measured in US dollars at the moment of the competition. See Table A.1 in the Online Appendix for the
complete list of competitions.

t, Nt players have already entered. Making a submission when the current maximum score
is s increases the maximum score to s′ = s + ε with probability qs and leaves the maximum
score at s with probability 1 − qs. It becomes increasingly difficult to increase the maximum
score as the current maximum score increases, i.e., qs decreases in s.7 As a consequence,
players know that submitting today can deter future submissions. We divide the length of
the contest into time intervals of length δ, so time is discrete t = 0, δ, 2δ, ..., T . Payoffs are
undiscounted.

Players publicly observe and keep track of four state variables: the current period (t), the
maximum score in the previous period (sP ), the current maximum score (s), and the identity
of the current leader (ℓ). At period t = 0, ..., T − 1, nature selects with probability λ ∈ (0, 1)
one randomly selected player, and with probability 1−λ no one is selected. The chosen player
is the only one who can choose to submit (“play”) in period t. Submissions are instantaneous
and cost c, where c is a random variable distributed according to K(·) and i.i.d. across players
and time.8 Players observe their cost realization before choosing whether to play. The state
space is

S = {(t, s, sP , ℓ) : t = 0, δ, ..., T, sP = 0, ε, ..., T ε, s ∈ {sP , sP + ε} and ℓ = 1, ..., N}.

7The assumption of small increments of size ε is motivated by the data.
8Non-pecuniary benefits are implicitly accounted for. Let (Prize + B) Pr(win) + W > ĉ, where B and

W are non-pecuniary benefits from winning and submitting, and ĉ is the actual submission cost. Then,
c = ĉ−W

Prize+B is the submission cost net of non-pecuniary benefits. We cannot separately identify W , B and ĉ.
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The contest awards contingent prizes. For tractability, we restrict to “Markovian” con-
tingent prizes rather than prizes that depend on the whole history of the contest. That is,
the leader of the competition in period t, receives a prize π(s, t|sP ), where sP is the pre-
vious period’s maximum score, and s is the current period’s maximum score. Contingent
prize structures allow for different prizes for reaching the same maximum score in the cur-
rent period depending on the maximum score in the previous period. That is, we can have
π(s, t|sP ) ̸= π(s, t|s′

P ), when sP ̸= s′
P .

At time t, a player is either the leader or one of the Nt − 1 followers. Let Lt,s,sP
be the

value of being the leader at time t when the current maximum score is s and the previous
maximum score is sP . Let Ft,s be the value of being one of the followers. At time T , when
the competition ends, and the maximum score is sT , the leader gets π(sT , T |sT −1), and the
followers get 0. We denote t′ = t + δ and s′ = s + ε.

The expected payoff of a leader with score s at t = 0, 1, ..., T − 1 is

Lt,s,sP
= π(s, t|sP ) +

(
1 − λ

Nt

N

)
Lt′,s,s + λ

N
Lown play

t,s + λ(Nt − 1)
N

Lrival play
t,s (1)

That is, when the maximum score in the previous and current periods are sp and s, the
leader at time t receives the prize π(s, t|sP ). There are three continuation payoffs. First,
with probability 1 − λNt

N
none of the players who have entered the contest can play, so the

current leader remains the leader, the score continues to be s, and the leader receives the
continuation payoff Lt′,s,s. Second, with probability λ

N
the current leader can choose to play,

in which case she receives the continuation payoff Lown play
t,s , defined in equation (2). Third,

with probability λ(Nt−1)
N

one of the Nt − 1 followers can choose to play, in which case the
current leader receives the continuation payoff Lrival play

t,s , defined in equation (5).9

The value Lown play
t,s is given by

Lown play
t,s = Ec [max{qsLt′,s′,s + (1 − qs)Lt′,s,s − c, Lt′,s,s}] , (2)

If selected by nature, the leader chooses whether to play after observing the cost realization,
c, playing if only if the expected marginal value of increasing the score is larger than the cost
of making the submission, i.e.,

qs(Lt′,s′,s − Lt′,s,s) ≥ c. (3)
9Nature selects players with a probability that is independent of the number of players that have entered

at time t, Nt. That is, nature selects each player with probability 1/N , where N is the time-independent
number of players that will participate in the competition. Empirically, Nt converges quickly to N .
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From this condition, the probability that the leader plays is

pL
t,s = K(qs(Lt′,s′,s − Lt′,s,s)), (4)

where K(·) is the distribution function of the submission cost. The last term in equation
(1), Lrival play

t,s , is the leader’s continuation payoff when one of the current Nt − 1 followers can
play, which happens with probability λ(Nt−1)

N
. We have

Lrival play
t,s = pF

t,s (qsFt′,s′ + (1 − qs)Lt′,s,s) + (1 − pF
t,s)Lt′,s,s. (5)

If a follower is selected by nature, she plays and replaces the current leader with probability
pF

t,sqs, in which case the maximum score increases to s′, and the current leader becomes a
follower, obtaining Ft′,s′ . With probability pF

t,s(1 − qs), the follower plays but fails to replace
the leader, so the current leader remains the leader, obtaining Lt′,s,s. With probability 1−pF

t,s,
the follower chooses not to play, so the current leader remains the leader, obtaining Lt′,s,s.
The probability pF

t,s is an equilibrium object that we derive later on.

We next specify the value of being a follower, Ft,s, which depends on the current score and
time but not on the previous maximum score. All the followers are symmetric, so the value
for any one particular follower is identical. Let j denote one of the Nt − 1 followers. The
value of being a follower is

Ft,s =
(

1 − λ
Nt

N

)
Ft′,s + λ

N
F leader play

t,s + λ

N
F j play

t,s + λ(Nt − 2)
N

F follower play
t,s (6)

Followers do not receive prizes. In our model, prizes for followers are suboptimal because
there is no entry margin, and all followers have the same probability of becoming the leader.
At time t, there are four cases. First, with probability 1 − λNt

N
, none of the players who

have entered the contest can play, so followers remain followers and receive the continuation
payoff Ft′,s. Second, nature selects the leader with probability λ

N
, in which case followers

receive the continuation payoff F leader play
t,s . Third, nature selects follower j with probability

λ
N

, in which case she receives the continuation payoff F j play
t,s . Fourth, nature selects one of

the other Nt − 2 followers (not j) with probability λ(Nt−2)
N

, in which case follower j receives
the continuation payoff F follower play

t,s .

The value F leader play
t,s is given by

F leader play
t,s = pL

t,s (qsFt′,s′ + (1 − qs)Ft′,s) + (1 − pL
t,s)Ft′,s (7)
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When nature selects the leader, she plays and increases the maximum score with probability
pL

t,sqs, in which case the followers receive Ft′,s′ . With probability pL
t,s(1 − qs), the leader plays

but fails to increase the maximum score, so followers receive Ft′,s. With probability 1 − pL
t,s,

the leader chooses not to play, so the followers receive Ft′,s.

The value F j play
t,s is given by

F j play
t,s = Ec [max{qsLt′,s′,s + (1 − qs)Ft′,s − c, Ft′,s}] . (8)

If selected by nature, follower j chooses between playing or not after observing the cost of
making a submission, c, playing if and only if

qs(Lt′,s′,s − Ft′,s) ≥ c. (9)

The condition above means that the expected marginal gain from becoming the leader must
be sufficiently larger than the cost. From here, the probability that a follower makes a
submission is

pF
t,s = K (qs(Lt′,s′,s − Ft′,s)) . (10)

The value F follower play
t,s is given by

F follower play
t,s = pF

t,s (qsFt′,s′ + (1 − qs)Ft′,s) + (1 − pF
t,s)Ft′,s (11)

When nature selects a follower other than player j, follower j always remains a follower, but
the maximum score can change. The follower other than j plays with probability pF

t,s and
increases the maximum score with probability qs. In that case, follower j gets Ft′,s′ . In any
other case, only time progresses, and follower j receives Ft′,s.

Key Driving Forces. Conditional on the current score and time, leaders and followers have
different incentives to play. For the leader, the expected marginal benefit of a successful play
is Lt′,s′,s − Lt′,s,s, whereas, for a follower, the benefit is Lt′,s′,s − Ft′,s. Let’s first consider the
leader’s incentive to make a costly submission. By increasing the score, the leader collects a
prize π(t′, s′|s) instead of π(t′, s, |s). This effect could be positive, negative, or zero, depending
on the contingent prize structure; if it is positive, the prospect of a higher prize motivates
the leader to play. Now, consider a follower’s incentive to make a costly submission. By
increasing the score, the follower collects a prize π(t′, s′|s) instead of 0 (a weakly positive
effect) and becomes the leader. Both the leader and the followers also anticipate that a
higher maximum has a deterrence effect on future submissions because qs′ < qs. As time
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goes on, however, the future competition effect softens, encouraging submissions.

Objective of the Contest Designer. The contest designer’s goal is to choose the prize
structure that maximizes the expected maximum score at the end of the contest.10 The set
of possible histories in our game is

H = {(a1, ..., aT ) : at ∈ {0, ε}},

with |H| = 2T . In history h = (ah
1 , ..., ah

T ) ∈ H, ah
t indicates the score change at time t, and

the maximum score at time t is sh
t = ∑t

j=1 ah
j . Markovian contingent prizes depend on the

maximum score at t − 1, the maximum score at t, and the current time, t. Thus, they are
determined by T (T + 1) variables, {π(s′, t|s)} for t = 1, ..., T , 0 ≤ s ≤ Tε and s′ ∈ {s, s + ε}.
A feasible contingent prize structure must satisfy that the sum of prizes in history h ∈ H is
less than or equal to the budget (normalized to 1). These are 2T constraints, one for each
history h ∈ H, with

π(sh
1 , 1) + π(sh

2 , 2|sh
1) + ... + π

(
sh

t , t|sh
t−1

)
+ ... + π

(
sh

T , T |sh
T −1

)
≤ 1 (BC-h)

To maximize the expected maximum score at the end of the contest, the designer solves

max
{π(·)}

∫
sh

T dF (h|π(·)) subject to (BC-h) for all h ∈ H. (12)

Contingent prize structures change the balance of different histories by dynamically manip-
ulating competitors’ incentives to make costly submissions throughout the competition.

3.1 Computational Burden

Solving problem (12) is computationally demanding. It requires choosing T (T + 1) variables
subject to 2T budget constraints. For small instances, we can find the optimal solution of
(12) by “brute force,” evaluating all feasible combinations. In fact, in Section 5.1, we use our
structural model estimates to simulate “short contests” instead of the actual longer duration
of the contests. There, we compare optimal structure with simple prize structures. We
show that optimal simple prize structures capture a large portion of the fully optimal prize
structures in these short contests.

10Implicitly, we assume a risk-neutral contest designer with monotone preferences for the maximum score.
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Below, we present two additional methods to assess the value of using an optimal prize
structure. First, we provide an upper bound on the gains from employing one. Second, we
solve an unconstrained problem (removing 2T constraints) at the expense of requiring us to
take a stance on the contest designer’s value of achieving different scores.

Upper Bound on Gains. Even though we cannot explicitly compute the optimal prize
structure when T is large, we can find an upper bound for the value of using it. To this
end, we use duality theory to provide an upper bound for the expected maximum score.
Specifically, for any vector µ = (µh)h∈H , with µh ≥ 0, an upper bound to (12) is

sup
{π(·)}


∫

sh
T dF (h|π(·)) −

∑
h∈H

µh

(
T∑

t=1
π(sh

t , t|sh
t−1) − 1

) . (13)

The smaller upper bound is found by minimizing (13) over (µh)h∈H , which is again compu-
tationally unfeasible because it entails solving an unconstrained problem with 2T variables.
However, fixing any vector of positive numbers (µh)h∈H and solving (13) over T (T + 1) vari-
ables, which is computationally feasible, we obtain an upper bound. This is useful because it
informs the designer about the performance of simple prize structures relative to the optimal
contingent prize structure. If contest outcomes with a simple prize structure are not too far
from the upper bound, then simple prize structures (feasible to compute) capture a large
portion of the gains from using the optimal prize structure (unfeasible to compute).

Finding the Optimal Budget. The main computational burden of finding the optimal
solution is the large number of constraints. Instead of solving the constrained problem for a
fixed budget, we could solve an alternative unconstrained problem. Let the designer’s value
of obtaining a maximum score s be V (s). Consider the relaxed problem, where the designer
chooses the prize structure that solves

max
{π(·)}

∫
V (sh

T ) dF (h|π(·)) −
∫ T∑

t=1
π(sh

t , t|sh
t−1) dF (h|π(·)) (14)

While this unconstrained problem is computationally tractable (T (T + 1) variables), it re-
quires us to take a stand on the shape of V (·).

To show that the use of flexible prize structures—rather than a final-ranking prize—is optimal
for different designer’s preferences, we solve problem (14) for different contests using two
functional forms of V (·): V (x) = x2 and V (x) =

√
x.11 We choose these two functional forms

to see whether a final-ranking prize is optimal for a convex function (representing that the
11The simulated contests make use of the same parameters estimated for the main model (Table 3).
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designer is “risk loving” on the maximum score) or for a concave function (representing that
the designer is “risk averse” on the maximum score). We find that flexible prize structures
dominate a final-ranking prize in both cases. Hence, contingent prize structures can improve
outcomes even if the designer is not budget-constrained but dislikes paying higher prizes.

3.2 Simple Prize Structures

To address the challenge of high dimensionality in finding optimal prize structures, we inves-
tigate different classes of simple prize structures. In these classes, prizes are zero for most
states and positive for a small subset of states, reducing the number of variables and con-
straints. Simple prize structures are appealing not only for being computationally tractable
but also for being easy to implement in practice.12 We focus on several classes of simple prize
structures, including time-contingent, score-contingent, hybrid, and elimination.

Time-contingent prizes. The prize structure is time-contingent if the interim leader at
time t receives a prize regardless of the current or the previous maximum score. That is,
π(st, t|st−1) = πt for all st ∈ {st−1, st−1 + ε} and st−1 ∈ {0, ε, ..., T ε}.

Score-contingent prizes (milestones). The prize structure is score-contingent if the first
player to reach a milestone receives a prize regardless of when the milestone was reached.
That is, π(st, t|st−1) = 0 for st = st−1 and π(st, t|st−1) ≥ 0 for st = st−1 + ε. Furthermore,
for any t′ ̸= t and s′ = s + ε, π(s′, t|s) = π(s′, t′|s).

Hybrid prizes. The hybrid structure combines milestones and time-contingent prizes. Here,
the time at which a milestone is reached matters, and there can be a final-ranking prize even
if the milestones are not reached. Here, π(s′, t|s) ≥ 0 when s belongs to some predetermined
set of scores and s′ = s + ε, or t = T . Otherwise, π(s′, t|s) = 0.

3.3 Discussion of Modeling Assumptions

Our model hinges on several assumptions to facilitate estimation. Some of these assumptions
simplify the behavior of players, while others reduce the choice set of the contest designer.

1. Learning and experimentation. One motivation to participate in a Kaggle competition
is the opportunity for players to learn and experiment. Even experienced players can

12In regulation, simple menus can capture large gains of optimal menus (Rogerson, 2003) .
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benefit from learning from their performance on earlier submissions. Our model accom-
modates a specific form of learning: each player has an equal probability of increasing
the maximum score, which decreases as the maximum score increases. In other words,
the function q(s) captures that all players learn in the same manner when the score
increases, as playing gives them an equal chance of increasing the maximum score.

A different way of modelling learning would be to make players’ performance (or cost)
depend on the number of past submissions. Under this form of learning, prize structures
that encourage early participation would allow the designer to benefit from enhanced
performance or lower costs due to learning. However, this approach significantly in-
creases the size of the state space, enlarging it by mN , where m is the number of “types”
associated with different levels of learning, and N is the number of players. If, for in-
stance, learning gives rise to two types, our state space would be 210 = 1, 024 times
larger. We refrain from such an approach for tractability.

2. Incentives to withhold submissions. A player could be concerned about increasing the
maximum score because it may inform rivals that are “stuck” that “something else” is
possible, encouraging them to exert effort. In such cases, players could withhold their
submissions and send them near the end of the competition to prevent encouraging
their rivals. We argue that at least three facts alleviate this concern. First, players
benefit from submitting their solutions as soon as possible to receive feedback, which
allows them to improve their current solutions. Second, there is a limit on the number
of submissions players can send each day. Third, Lemus and Marshall (2021) use the
same sample of contests as in this article and do not find empirical evidence suggesting
strategic withholding.

3. Leader, followers, and prizes. At each instant during the contest, Kaggle’s leaderboard
displays the best score for each player. Furthermore, multiple players receive prizes at
the end of the contest based on the final ranking (usually three prizes). In our model,
there is no notion of “being close” to the leader, as each follower is symmetric. We also
assume that only the leader receives a prize. These assumptions are for convenience,
reducing the dimension of the state space. Keeping track of each player’s scores at each
point in time increases our state space by |S|N−1, where |S| is the number of possible
scores and N is the number of players. Also, the number of variables for contingent
prizes would increase by m, where m is the number of “places” that receive an award.
Qualitatively, the optimal contingent prize structures in this augmented model should
be similar to what we find. In our setting, the incentive to play is driven by the
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prize π(s′, t|s) for becoming the leader.13 With multiple prizes, the players’ decisions
are more involved as they assess the probability of ending the contest in a different
ranking, which determines their expected reward. With m prizes, players’ incentives
are driven by the expected prize ∑m

j=1 π(s, t, j|s′) × Pr(rank j at time t). We speculate
that our results would not dramatically change under this modification.

4. Intensive Margin. Effort in our model is a binary choice. We refrain from modelling
an intensive margin for three reasons. First, effort is not directly observable in our
data. Therefore, we would need to model effort based on, for example, time between
submissions, which is a noisy measure. Second, scores evolve smoothly over time, with
only a few submissions increasing the maximum score by a relatively large amount.14

Third, if there was an intensive effort choice, players would choose more effort towards
the end of the competition, when the marginal return to become the competition leader
is higher. This effect is already captured by in our setting by the increased number of
submissions toward the end of the competition.

5. Player heterogeneity. Our model assumes players are homogeneous in ability. In our
estimation, we focus on top performers, who have arguably more similar abilities than
two randomly selected players in the contest, which alleviates heterogeneity concerns.
A simple test reveals that the top 10 players are fairly homogeneous. Specifically, less
than 20 percent of the variance of scores can be explained by competition and team-
fixed effects. Moreover, most of the coefficients on players’ fixed effects are statistically
insignificant. These facts combined suggest that most of the differences in performance
among this group of players are random.

6. Open or restricted entry. Kaggle contests are typically open contests (anyone can
participate). We do not model entry or exit. Lemus and Marshall (2021) discuss at
length the exogenous entry assumption. Here, we analyze the strategic behavior of the
top performers in each contest both to alleviate concerns about player heterogeneity
and focus on the players who are likely to influence the contest outcomes.

7. Length and number of stages. Most Kaggle contests do not allocate intermediate prizes,
nor are they split into separate “stages.” We normalize the length of the contests to
facilitate meaningful comparisons across them. Dividing the contest into multiple stages

13While the leader and followers have different incentives, leapfrogging is common: conditional on the
maximum score changing, a follower becomes the leader with a probability greater than 80 percent.

14It is plausible that most of the effort is done before the first submission, and the majority of players’
subsequent submissions comprise “tweaking” their initial algorithms. In that case, each “tweak” would likely
require a similar amount of effort.
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can reduce discouragement by bringing players “closer together” at the beginning of
each stage. In our setting, there is no notion of being “close” to the leader because
every player who is not a leader is a follower. Furthermore, if a contest were divided
into stages, and there is no information exchanged among players, they could always
resubmit their last solution to reset the latest leaderboard at the beginning of each new
stage. Hence, in our setting, splitting the contest into multiple stages is unfeasible.

4 Estimation

Given that only the state is payoff relevant, we use the Markov-perfect equilibrium concept.
Computationally, we find it using backward induction.

The full set of primitives for a given contest include i) the probability that a player can
play at time t, λ; ii) the entry times of each player; iii) the function qs, which indicates the
probability of advancing the maximum score given that the current maximum score is s; and
iv) the distribution of submission costs, K(c; σ) = cσ, where σ > 0 and the support of the
distribution is the interval [0, 1].15 We allow these primitives to vary at the contest level.

We use a two-step procedure to estimate the primitives of each contest. In the first step,
we recover or estimate primitives i)-iii) without using the full structure of the model. In the
second step, we use the estimates of these primitives to estimate the cost distribution using
a generalized method of moments (GMM) estimator.

We make use of a feature of the platform Kaggle to calibrate the probability that a player
can play at a given time period, λ. Specifically, players face a cap on the number of daily
submissions, which in conjunction with the length of the contest, gives us a player’s maximum
number of submissions during the competition (i.e., daily cap · competition length (days)).
We set λ to be N ·daily cap×competition length (days)/T , where N is the number of players
and T is the number of time periods in the model. This expression gives a measure of the
fraction of periods in which a player can play, which is what we intend to capture with λ.

The entry times of each player are assumed to be exogenous in the model, and we recover
them directly from the data. Next, we specify the function qs as

qs = exp{β0 + β1s}/(1 + exp{β0 + β1s}),
15Recall that we normalize the size of the prize to be 1 for every contest.
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and we estimate β0 and β1 using a maximum-likelihood estimator, using data on whether
each submission increased the maximum score as well as the maximum score at the time of
each submission (s). Because in some competitions, the maximum score changes infrequently,
we pool the data from all competitions to gain power in estimating the parameter β1, which
we constrain to be uniform across contests. We allow β0 to vary across contests.

In the second step, we estimate the parameter σ of the cost distribution, K(c; σ) = cσ, where
σ > 0. We leverage revealed preference for identification: if σ is larger (smaller), participants
find making submissions costlier (cheaper), resulting in fewer (more) submissions predicted
by the model. In the estimation, we search for the value of σ that rationalizes the observed
number of submissions.

In practice, we use a GMM estimator, where the moments are based on comparisons of the
number of observed submissions and the number of submissions predicted by the model.
Specifically, we divide the length of each contest into five periods of equal length (henceforth,
time quintiles), and we compute the number of submissions observed in the data and predicted
by the model in each time quintile k: mk(σ) = submissionsdata

k − submissionsmodel
k . We also

include a sixth moment that compares the overall number of submissions in the data and
predicted by the model. The GMM estimator is then given by

σ̂ = arg min
σ

m̂(σ)′Wm̂(σ),

where W is a weighting matrix. We present bootstrapped standard errors.

We use the full-solution method to compute the moments for a given value of σ. That is,
for a given σ, we compute the equilibrium of the game using backward induction to obtain
the matrices of conditional-choice probabilities (CCPs) pL (leader) and pF (followers) of
dimensions S2 × T (S is the size of the set of possible scores and T is the number of periods)
where element (s, t, sP ) of pj is pj

s,t,sP .16 Using the CCPs, we can also compute the equilibrium
distribution of maximum scores at every period of time, G (of dimensions S2 × T ), where
column t gives the distribution of maximum scores at time t. Element-wise multiplication
of λ(pL + (N − 1)pF )/N (i.e., the probability of play when a player is chosen at random)
and G, followed by a summation of the product over the first dimension, gives us a 1 × T

vector with the expected probabilities of a submission at every instant of time, which we use
to compute the moments.

16In the estimation, we set T = 10, 000 and S varies across contests. In a given contest, the set of scores
is set to include all unique maximum scores in the competition as well as the values −2, −1.5, −1, −0.5, and
s̄ + [0.001 : 0.001 : 0.045], where s̄ is the highest observed score in the competition.
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Table 2: GMM estimates of model parameters (partial list of competitions)

Competition σ SE λ β0 (q) SE β1 (q) SE Obj. Fun N
Heritage Health Prize 0.0279 0.0001 0.7306 -3.5412 0.0461 -1.3618 0.1938 0.0138 2687
Allstate Purchase Prediction Challenge 0.0555 0.0001 0.4519 -3.1441 0.0473 -1.3618 0.1938 0.0006 1204
Higgs Boson Machine Learning Challenge 0.0648 0.0001 0.6307 -3.3141 0.0994 -1.3618 0.1938 0.0042 1776
Acquire Valued Shoppers Challenge 0.0148 0.0003 0.4759 -2.3999 0.1707 -1.3618 0.1938 0.0045 2347
Liberty Mutual Group - Fire Peril Loss Cost 0.0367 0.0001 0.2825 -2.075 0.1316 -1.3618 0.1938 0.0011 1057
Driver Telematics Analysis 0.0735 0.0001 0.4571 -4.2049 0.1214 -1.3618 0.1938 0.0018 1619
Crowdflower Search Results Relevance 0.0129 0.0001 0.2806 -2.8256 0.105 -1.3618 0.1938 0.0012 1645
Caterpillar Tube Pricing 0.0172 0.0001 0.3166 -3.0875 0.0277 -1.3618 0.1938 0.0004 1938
Liberty Mutual Group: Property Inspection Prediction 0.0233 0.0001 0.2667 -3.1092 0.06 -1.3618 0.1938 0.0009 1271
Coupon Purchase Prediction 0.1222 0.0003 0.3848 -2.0006 0.2093 -1.3618 0.1938 0.0027 631
Springleaf Marketing Response 0.0326 0.0001 0.332 -3.0862 0.0708 -1.3618 0.1938 0.0009 1567
Homesite Quote Conversion 0.0223 0.0001 0.4559 -3.1196 0.0355 -1.3618 0.1938 0.0009 2557
Prudential Life Insurance Assessment 0.0749 0.0006 0.4219 -3.0026 0.0449 -1.3618 0.1938 0.0020 818
Santander Customer Satisfaction 0.0218 0.0001 0.3059 -2.2694 0.0479 -1.3618 0.1938 0.0021 1138
Expedia Hotel Recommendations 0.1011 0.0001 0.2814 -1.7786 0.0485 -1.3618 0.1938 0.0005 436

Notes: The table reports the GMM estimates with bootstrapped standard errors. See Table A.2 in the Online
Appendix for the complete list of competitions.

Lastly, we restrict the sample to the top 10 players in each contest (measured by the ranking
of players at the end of the competition), i.e., N = 10. We make this choice for two reasons:
i) this is the set of players achieving scores that trigger changes in the top positions of the
leaderboard, and ii) we suspect that this group of players is less heterogeneous than the entire
pool of players, which allows us to abstract away from modeling player heterogeneity.

4.1 Estimation Results and Model Fit

Table 2 reports the GMM estimates for a partial list of contests (see Table A.2 in the Online
Appendix for the full list).

Regarding the goodness of fit of the model, Figure 2.A and Figure 2.B plot the actual versus
the predicted maximum score and number of submissions for every contest. The figures
show that the model estimates are able to replicate the data in both cases. Figure 2.C plots
the actual and predicted number of submissions over time, averaged across contests, where
time is divided into 10 periods of equal length. The figure shows that the model estimates
are able to replicate the submission dynamics in the data without systematically under or
over-predicting the observed values.

Figure A.1.A in the Online Appendix plots the cross-contest distribution of the expected
cost of making a submission. Given the distribution of costs that we use in our model, i.e.,
K(c; σ) = cσ, the expected cost is given by σ/(1 + σ). Since the model normalizes the value
of the prize pool to 1, we have to scale this up by the size of the prize in order to translate
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Figure 2: Model fit
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Notes: Panels A and B are scatter plots of the number of submissions and the maximum score in every
contest, where the data is on the y-axis and the model predictions on the x-axis. Panel C plots the average
number of submissions across contests for every time decile in the data and predicted by the model.

costs to dollars. The figure shows that the median expected cost of making a submission is
$642 dollars and 75 percent of contests have an expected cost that is less than $1,280. If
a player needs 10 hours to prepare to make a submission, the median hourly cost is $64.2
dollars.

Note, however, that these averages represent the unconditional distribution of costs. When
a player decides to make a submission, they weigh the benefit against the cost. A submission
occurs only when the benefit outweighs the cost, creating selection: making a submission is
indicative of a low cost draw. We approximate the expected conditional cost of making a
submission for every contest by computing the expected conditional mean at time zero.17 We

17Specifically, we compute E[c|c < B0] = Bσ+1
0 σ

σ+1 , where B0 = q0
N × Prize.
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Table 3: Percentage change in the expected number of score increments under alternative prize
structures in simulated contests (relative to a prize structure where all the prize money is awarded
at the end of the competition)

s̄ = 0 s̄ = 0.4 s̄ = 0.8
Optimal SC 2-parameter SC Optimal SC 2-parameter SC Optimal SC 2-parameter SC

T = 5 2.52 2.3 2.25 2.76 2.61 2.58 3.01 2.91 2.89
(0.25) (0.23) (0.23) (0.27) (0.26) (0.26) (0.29) (0.28) (0.28)

T = 10 1.87 1.5 1.41 2.1 1.79 1.73 2.38 2.14 2.1
(0.19) (0.16) (0.16) (0.21) (0.19) (0.19) (0.23) (0.22) (0.22)

T = 15 1.68 1.29 1.14 1.83 1.47 1.38 2.09 1.78 1.73
(0.17) (0.15) (0.13) (0.19) (0.16) (0.16) (0.21) (0.19) (0.19)

Notes: The table reports the average percentage change in the expected number of score increments (i.e., the
number of times the maximum score increases during the contest) under alternative prize structures relative
to a final-ranking prize. The optimal column captures the gains from using the optimal prize structure, the
’SC’ shows the gains of a hybrid prize structure, and the ‘2-parameter SC column’ shows the gains of an
optimally calibrated milestone in combination with a prize to the leader at the end. These outcomes were
computed based on simulated contests that make use of the model estimates in Table 2. In these simulated
contests, we vary two parameters relative to the “full” model: T (number of periods) and s̄ (the score at the
beginning of the contest). The parameter ε is fixed at 0.1. Standard errors are in parentheses.

report these values in Figure A.1.B and find that the average cost of a submission, conditional
on choosing to make a submission, is $26.6 dollars, highlighting the role of selection.

5 Prize Structure and Contest Outcomes

How do different prize structures impact contest outcomes? Using our model estimates, we
use counterfactual simulations to provide an answer using two exercises. In the first exercise,
we use the model estimates in Table 2 to simulate contests that are shorter than the ones
observed in our sample. The shorter length of these simulated contests allows us to solve for
the optimal prize structure and compare contest outcomes under the optimal prize structure
with outcomes under alternative prize structures. Because the dimensionality of the optimal
prize structure explodes as we increase the length of the contest, we use this exercise to explore
whether simple prize structures can approximate the gains of the optimal prize structure. In
the second exercise, we use our model estimates and compare the observed equilibrium of the
contest in our sample with the equilibria of these contests under alternative prize structures,
where our focus is on simple prize structures.
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5.1 Optimal Prize Structure

We begin our analysis by finding the optimal prize structure in short contests. We simulate
a contest for each set of primitives in Table 2 with different T (number of periods), s̄ (the
score at the beginning of the contest), and ε (the size of the score increments). We fix ε at
0.1, and vary T and s̄ to consider the sensitivity of our results to these parameters.

For every combination of parameters, we compare the performance of a final-ranking prize
with the performance of three alternative prize structures: (1) the optimal prize structure,
which solves problem (12); (2) the optimal score-contingent prize structure (“SC”) that
rewards players who advance the maximum score (i.e., we allow for π(st = s, t|st−1) = πs ≥ 0
for every s) as well as the player who leads the competition at the end; (3) a “2-parameter
SC” that awards one prize from reaching a milestone and one prize for the leader at the end of
the contest; the size of the milestone and the size of the two prizes are chosen optimally. We
measure the performance of each prize structure by the expected number of score increments
during the contest (i.e., the number of times the maximum score increases during the contest).
We use this variable because it contains all the information needed to compute the final
maximum score (together with ε and s̄) and is unaffected by the scale of scores.

Table 3 shows that the optimal prize structure always increases performance relative to a
final-ranking prize in short contests. Specifically, it increases the number of score increments
between 1.68 percent (when T = 15 and s̄ = 0) and 3.01 percent (when T = 5 and s̄ = 0.8)
on average.

The table shows two salient patterns related to the current- and the future-competition
effects. We capture the intensity of the current competition effect by the initial score: A
higher value of s̄ implies that the probability of increasing the maximum score is lower. We
capture the intensity of the future-competition effect by the length of the contest: a higher
value of T means that the future-competition effect early in the contest is stronger.

First, the gains from using the optimal prize structure are larger when the current competition
effect is stronger. For instance, when T = 5, the gain increases from 2.52 percent to 3.01
percent. Intuitively, a stronger current-competition effect discourages players, so with a final-
ranking prize, the leader can “rest on her laurels” and wait for the competition to end to
receive a prize. The optimal structure must reward players who increase the score but do
not necessarily lead the competition at the end. We can see that rewarding score increments
(column ‘SC’) capture a large fraction of the gains of the optimal prize structure (between
77 and 97 percent). Perhaps more surprisingly, a milestone prize in combination with a
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prize to the leader based on final standings (column ‘2 parameter SC’) achieves between 68
and 96 percent of the gains of the optimal prize structure. This is surprising because the ‘2
parameter SC’ is very sparse. For example, in a contest with 15 periods, the optimal prize
structure can award up to 210 prizes, whereas a 2-parameter SC awards only 2 prizes.

Second, the gains from using the optimal prize structure are smaller when the future com-
petition effect is stronger. For instance, when s̄ = 0 the gain decreases from 2.52 percent to
1.68 percent. Here, the optimal prize structure can use contingent prizes to motivate players
early on. However, it cannot reward early plays too much; otherwise, the remaining budget
will be too small, discouraging players later on. One concern regarding the gains from the
optimal structure when T becomes very large is that they could converge to zero since there
is a decreasing pattern. In the next section, we show this is not the case. While we cannot
compute the optimal prize structure for large values of T , we show that the gains from simple
structures are bounded away from zero and, in fact, can be substantial.

In summary, studying short contests suggests that simple prize structures can approximate
the gains of the optimal prize structure despite being sparse.

5.2 The Gains of Simple Prize Structures

We next turn to compare the contests we observe in our sample (i.e., the observed equilibria)
with the equilibrium of each of these contests under alternative prize structures. We consider
seven counterfactual designs, each of which has a simple structure. The first three designs
consider k prizes to the interim leaders at k equally spaced times, with the size of each of the
k prizes chosen optimally and k ∈ {2, 4, 6}. The fourth design (“2 timed prizes”) allocates
two prizes: one of size π ∈ [0, 1] at time τ ∈ [0, T ], and one of size 1 − π at the end of the
competition. Both π and τ are chosen optimally. The fifth design (“milestone”) awards the
full prize pool to the first player surpassing an optimally chosen milestone score B. The sixth
design (“hybrid”) awards one prize to the first player surpassing a milestone score and one
prize to the leader of the competition based on final standings, where the milestone and the
magnitude of both prizes are optimally chosen. The last design (“elimination”) eliminates k

followers (chosen at random) in the middle of the contest, where k is optimally chosen.

Table 4 presents a comparison of equilibrium outcomes. For each contest, we compute the
optimal set of parameters for each prize structure class. The columns labelled “Optimal”
compare the equilibrium number of submissions and maximum score (in expectation) under
the within-class optimal prize structure relative to the equilibrium outcomes under the base-
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Table 4: Equilibrium outcomes under alternative prize structures

Change in Change in
# of submissions (in %) max score (in st. dev.)
Optimal Uniform Optimal Uniform

2 prizes 13.378 12.985 0.017 0.016
(1.676) (1.668) (0.004) (0.004)

4 prizes 25.061 24.742 0.032 0.032
(2.353) (2.338) (0.008) (0.007)

6 prizes 30.535 30.389 0.039 0.039
(2.67) (2.67) (0.008) (0.008)

2 timed prizes 21.096 15.368 0.03 0.02
(2.185) (1.805) (0.008) (0.005)

Milestone 30.802 -84.503 0.04 -0.168
(3.282) (13.715) (0.009) (0.052)

Hybrid 36.528 8.45 0.047 0.01
(3.149) (2.542) (0.009) (0.003)

Elimination 10.539 10.539 0.013 0.013
(2.319) (2.319) (0.005) (0.005)

Notes: The table reports the average change in the number of submissions and maximum score when using
alternative prize structures. The outcome differences compare the optimal set of parameters for each prize
structure class. The column “Optimal” finds optimal parameters for each contest and averages the gains.
The column “Uniform” finds a single set of parameters that maximize the average maximum score across
contests.

line design (i.e., when all the prize money is awarded based on the final ranking). The table
shows that awarding intermediate prizes can increase submissions by up to an average of 36.5
percent and the maximum score by 0.047 standard deviations (the case with the hybrid prize
structure). The prize structure with 6 intermediate prizes achieves the third highest gains,
with an average increase in the number of submissions and a maximum score of 30.5 per-
cent and 0.039 standard deviations, respectively. The milestone prize structure is the second
highest performer, with an average increase in the number of submissions and a maximum
score of 30.8 percent and 0.04 standard deviations, respectively. The hybrid prize structure
achieves the greatest gains in 82 percent of the competitions, while the 6-prize structure is
optimal in the remaining 18 percent.18 These results suggest that flexible prize structures
can increase incentives to make submissions by economically significant magnitudes.

To further illustrate the impacts of contingent prizes, Figure 3 shows how the average num-
18Table A.3 in the Online Appendix presents estimates of a probit model for the probability of the hybrid

prize structure being optimal for a contest as a function of contest primitives. The table shows that the
hybrid design is more likely to be optimal when the frequency of submission opportunities is higher (i.e.,
stronger future competition).
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Figure 3: Submission dynamics in a 4-prize prize structure relative to the baseline design
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Notes: The figures present the change in the equilibrium number of submissions predicted by the model (in
logs) when implementing the optimal 4-prize prize structure (relative to the baseline design).

ber of submissions changes over time when implementing a 4-prize prize structure (measured
relative to the baseline design). As the figure shows, the 4-prize structure boosts incentives
early in the competition, especially around the times the interim prizes are given, and de-
creases incentives near the end. Although the decrease near the end is small, incentives to
participate are greatest near the end (see Figure 2.C). Nevertheless, the total number of
submissions increases on average by 25.1 percent relative to a prize structure based only on
final standings.

Figure 4 presents details about the parameters governing the optimal prize structures within
each prize class. Panels B and C show that the 4- and 6-prize optimal designs are similar
across contests in that the prizes increase over time, and the ranges of each of the prizes
are somewhat narrow. Panel D shows that in the design with 2-timed prizes, about 80
percent of the probability mass of the distribution of the optimal time of the first prize is in
between times 0.6 and 0.8. The optimal milestone score and hybrid designs (Panels E and F)
feature more heterogeneity across contests, which reflects underlying differences in the score
distributions and the probability of increasing the maximum score across contests. Omitted
in the figure is the elimination design, as we find that it is optimal to eliminate 1 player
in the middle of the competition in every contest. Although we find that the punishment
of eliminating players boosts the incentive to make submissions early in the competition,
the cost of having fewer players able to make submissions in the second half is too great to
eliminate more than one player.

We note that to compute the optimal prize structure within each counterfactual design for
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Figure 4: Optimal prize structures, by prize class
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a contest, the contest designer needs to know all the primitives of the model. The designer
may not have that information before the contest, which motivates us to ask: are the gains in
contest outcomes similar if the prize structure is constrained to be uniform across all contests?
We answer this question in the columns of Table 4 that are labelled “Uniform”, where we
compute the gains for each contest using a prize structure that was chosen by optimizing
the average maximum score across contests subject to the prize structure being identical
for all contests.19 The table reveals that when a uniform prize structure is imposed on all
contests, the gains of intermediate prizes are generally not too different from when prize
structures are optimized contest by contest, with the exceptions being the milestone and
hybrid prize structures. For example, in the design with 6 prizes, the gains with a uniform
prize structure are less than 1 percent smaller than those with the contest-by-contest optimal
prize structure. The uniform prize structures perform worse in the milestone and hybrid prize
structures because of the heterogeneity in the optimal milestone scores across contests we
show in Figure 4.

Lastly, to measure the gains of using optimal designs in US dollars, we perform the following
exercise. For every competition, we compute the equilibrium of the game using the optimal
simple prize structure for a given class of simple prize structure. However, we compute
this optimal structure scaling down the prize pool up to the point of matching equilibrium
outcomes with observed outcomes. Specifically, we find the optimal hybrid prize structure
and the optimal 6-prize structure under the constraint of uniformity across contests, as these
are the designs that perform best in each column of Table 4. The results suggest that
the contest designer could achieve the same outcomes in the data and save an average of
$14,894 if they used the optimal hybrid structure or $14,355 if they used the uniform 6-prize
structure. That is, the contest designer could achieve the same outcomes while saving nearly
half of the prize money by better managing the discouragement effects with more flexible
prize structures.

Combined, these results suggest that both discouragement effects (i.e., future competition and
current competition) impact participation incentives. Contingent prizes can boost incentives
by counteracting the discouragement effects (in particular, the future competition effect) and
cause economically significant gains in contest outcomes.

19Table A.4 in the Online Appendix presents the parameters of the optimal uniform prize structure for
each design.
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6 Experimental Evidence

This section presents experiment evidence, which is valuable as a complement to our struc-
tural estimates for two reasons. First, it allows us to investigate whether contingent prizes
can improve contest outcomes without relying on model assumptions. Estimates from our
randomized-controlled trial are “model-free” estimates. Second, it gives us an opportunity
to test some of the predictions of the empirical model regarding the performances of par-
ticular prize structures. To this end, we use our structural estimates to guide our choice of
experimental treatments.

6.1 Description of the Experiment

To complement our model-based evidence, we recruited University of British Columbia (UBC)
and University of Illinois at Urbana-Champaign (UIUC) students for a randomized control
trial, which we ran on Kaggle.20 We exploit experimental variation in prize structure to
measure the impact of the prize structure on contest outcomes and competition dynamics.
This exercise is meant to provide model-free evidence of the value of contingent prizes.

We recruited 405 students (both undergraduates and graduates) via emails, department
newsletters, and flyers. Registration required participants to create a Kaggle account and
complete a short survey, which we use as our baseline survey. The survey asked participants
whether they had participated in an online data science competition prior to the study, had
statistics knowledge, or had machine learning skills.

In the experiment, we created 81 groups (or contests) of 5 participants. Of these groups,
27 out of 81 featured UBC students, with the remaining 54 being composed of UIUC stu-
dents. Each group was randomly assigned to one of three prize structures, and all other
aspects of the contests were identical (e.g., difficulty, reward budget, duration, and number
of participants). We ran the competitions simultaneously. In the competitions, players had
11 days to solve a simple prediction problem: interpolate a function (see Online Appendix
C for details). Players were allowed to submit up to 10 sets of predictions per day, and all
competitions displayed a real-time leaderboard providing information about the performance
of all participants. The objective of the competition was to achieve prediction accuracy, as
measured by RMSE. Unlike the rest of the paper, a better submission here is one with a

20Approval from the University of Illinois Human Subjects Committee, IRB22154, and the University of
British Columbia’s Behavioral Research Ethics Board, H21-01835.
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Table 5: Baseline summary statistics and test of balance

Control 2 prizes Hybrid F -test
(N = 27) (N = 27) (N = 27)

Variable Mean Coeff. p-value Coeff. p-value p-value
(1) (2) (3) (4) (5) (6)

Past participation 0.096 0.027 0.504 0 1 0.723
Knows machine learning 0.467 -0.036 0.569 0.022 0.727 0.562
Uses statistical tools 0.733 -0.018 0.775 0.037 0.533 0.636

Notes: An observation is a contest. All variables are defined at the contest level as follows: ‘Past participation’
is the share of players in the contest who have participated in a prediction contest in the past, ‘Knows machine
learning’ is the share of players in the contest who have machine learning skills, and ‘Uses statistical tools’
is the share of players in the contest who have learned statistics. Columns 2-6 report the coefficients and
p-values from OLS regressions of each covariate on two indicators: ‘2 prizes’ and ‘hybrid’. Column 7 reports
the p-value from a joint test of statistical significance of both indicators.

smaller score (i.e., lower RMSE). The prize pool in every competition, regardless of the prize
structure, was $100 (in Amazon gift cards).

As mentioned, each group was randomly assigned to one of three prize structures. In the
first, the leader at the end of the competition received $100 (control). In the second, the
leader at 80 percent of the competition time—at the end of day 9 (out of 11 days)—received
$30, and the leader at the end of the competition received $70 (treatment “2 prizes”). Lastly,
the third one awarded $30 to the first player to surpass a predetermined milestone score and
$70 to the leader at the end of the competition (treatment “hybrid”). We set the milestone
score at 0.15, which was the median score of the winning submission in an experiment that
we ran in the past (Lemus and Marshall, 2021), where different participants had to solve the
same problem.

Table 5 shows the outcome of the randomization. For every covariate in the baseline survey,
we ran an OLS regression with indicators for every treatment assignment, where the control
group is the omitted category. Column 1 reports the average value of the covariates in the
control group and columns 2 to 5 report the coefficients on the treatment indicators as well
as the p-values from statistical significance tests. Column 6 reports the p-value from a joint
test of statistical significance of both indicators. The table shows that about 10 percent of
participants had prior experience in online data science competitions, 75 percent had knowl-
edge of statistical tools, and only about half reported knowing machine learning techniques.
There are no statistically significant differences in these covariates across treatment groups.
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Table 6: Prize structure impacts on contest outcomes

Min. score # of submissions Min. score # of submissions
(1) (2) (3) (4)

2 prizes 0.026 4.268 0.026 5.375
(0.063) (10.229) (0.064) (10.529)

Hybrid -0.054** 6.000 -0.055** 6.492
(0.026) (10.811) (0.027) (11.072)

Controls No No Yes Yes
N 80 80 80 80
R2 0.030 0.005 0.082 0.042
Mean dep. variable 0.174 39.375 0.174 39.375
Std. dev. dep. variable 0.191 37.549 0.191 37.549

Notes: An observation is a contest. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01. Controls include all covariates reported in Table 5.

6.2 Results

Table 6 reports the main results on the impacts of the prize structure on contest outcomes.
We consider two contest-level outcome variables: the minimum score (i.e., the best score)
and the number of submissions. We run an OLS regression for every outcome variable with
indicators for each treatment assignment. The first two columns exclude controls, whereas
the second two include the covariates in Table 5 as controls.21

Columns 1 and 3 suggest that the hybrid prize structure caused the minimum score to
decrease by 0.05, about a third of the mean of the dependent variable.22 These columns also
suggest no statistical difference in the average minimum score between the control group and
the contests assigned to a 2-prize design.23 To shed light on heterogeneity, Figure 5 plots
the minimum scores across all contests by treatment assignment. Figure 5.A shows that
the cumulative distribution functions of the control and the 2-prize groups cross each other,
whereas Figure 5.B shows that the cumulative distribution function of minimum scores in
the control groups first-order stochastically dominates that of the hybrid contests.

Columns 2 and 4 of Table 6 show that at the end of the competition, the 2-prize and the hybrid
contests had a greater number of submissions than the control group, although the estimates

21The table has 80 observations because 1 contest received no submissions.
22We replicate these results using quantile regression for the median in Table A.5 in the Online Appendix.
23We had one outlier: In one of the 2-prize contests, there was a single submission (minimum score ≥ 1.5 in

Figure 5). The 2-prizes design would feature lower minimum scores on average had we removed that outlier.
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Figure 5: Distribution of minimum scores, by prize structure
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Notes: The figures present the cumulative distribution functions of the maximum score for the different prize
structures. A data point in every figure is a contest.

are noisy. This comparison, however, obscures how the prize structure shapes incentives to
exert effort throughout the competition. Figure 6 plots the difference in the average number
of submissions between treatment X and the control group, by day. Figure 6.A shows that
early in the competition, the 2-prize contests had an average number of submissions that was
greater than that of the control contests, with the difference peaking on day 8 (a day before
the first of the two prizes was awarded). The difference becomes negative in the last three
days of the competition (although the estimates are noisy), which is as expected: after the
first of the prizes is awarded, the control contests have a greater continuation prize (all else
equal), which should lead to greater effort provision in those contests.24 A similar pattern
is observed in Figure 6.B, where the difference in submissions was greatest in the first four
days, reflecting participants’ effort to surpass the milestone score in the hybrid contests.

7 Summary

We study dynamic contests with public, real-time performance feedback. These types of
contests are widely used in practice, so it is valuable to understand simple ways in which
a contest designer can improve outcomes on a fixed budget. We identify two central forces
governing incentives to play at any point during the competition: the future competition

24Along these lines, Table A.6 in the Online Appendix shows that conditional on the minimum score at
day 9, the number of submissions was on average lower in the 2-prizes and hybrid contests.
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Figure 6: Submissions over time, by prize structure
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Notes: The figures show the difference in average daily submissions in treatment (2-prizes or hybrid) and
control contests. Each contest–day combination is an observation. In Panel A, the vertical line indicates the
day of the first prize award in the 2-prize contests.

effect (i.e., plays that are yet to unfold) and the current-competition effect (i.e., current
maximum score).

Contingent prizes, rather than prizes based on the final ranking only, can affect the balance
of these effects and, therefore, can improve outcomes. To shed light on this issue empirically,
we measure the performance of various contest designs featuring time- or score-contingent
prizes using an empirical structural model and an experiment. Our model estimates and
experimental results show that a combination of score- and time-contingent prizes generate
significant gains relative to the baseline design, where all the prize money is awarded to the
leader at the end of the competition. We characterize the optimal prize structure among a
set of simple prize structures for each contest in the data. We also find parameters for each
prize structure that the designer can use when she does not know the primitive parameters
of a contest, and we show that this “uniform” design captures a large portion of the gains
from using a tailored prize structure in each contest.
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A Additional Tables and Figures

Table A.1: Summary of competitions

Competition Total reward Submissions Start date Deadline
Predict Grant Applications 5,000 371 12/13/2010 02/20/2011
RTA Freeway Travel Time Prediction 10,000 386 11/23/2010 02/13/2011
Deloitte/FIDE Chess Rating Challenge 10,000 342 02/07/2011 05/04/2011
Heritage Health Prize 500,000 2,687 04/04/2011 04/04/2013
Wikipedia’s Participation Challenge 10,000 338 06/28/2011 09/20/2011
Allstate Claim Prediction Challenge 10,000 338 07/13/2011 10/12/2011
dunnhumby’s Shopper Challenge 10,000 304 07/29/2011 09/30/2011
Give Me Some Credit 5,000 413 09/19/2011 12/15/2011
Don’t Get Kicked! 10,000 880 09/30/2011 01/05/2012
Algorithmic Trading Challenge 10,000 442 11/11/2011 01/08/2012
What Do You Know? 5,000 371 11/18/2011 02/29/2012
Photo Quality Prediction 5,000 223 10/29/2011 11/20/2011
Benchmark Bond Trade Price Challenge 17,500 456 01/27/2012 04/30/2012
KDD Cup 2012, Track 1 8,000 1,267 02/20/2012 06/01/2012
KDD Cup 2012, Track 2 8,000 864 02/20/2012 06/01/2012
Predicting a Biological Response 20,000 651 03/16/2012 06/15/2012
Online Product Sales 22,500 418 05/04/2012 07/03/2012
EMI Music Data Science Hackathon - July 21st - 24 hours 10,000 109 07/21/2012 07/22/2012
Belkin Energy Disaggregation Competition 25,000 607 07/02/2013 10/30/2013
Merck Molecular Activity Challenge 40,000 415 08/16/2012 10/16/2012
U.S. Census Return Rate Challenge 25,000 272 08/31/2012 11/11/2012
Amazon.com - Employee Access Challenge 5,000 755 05/29/2013 07/31/2013
The Marinexplore and Cornell University Whale Detection Challenge 10,000 326 02/08/2013 04/08/2013
See Click Predict Fix - Hackathon 1,000 262 09/28/2013 09/29/2013
KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 7,500 623 04/19/2013 06/12/2013
Influencers in Social Networks 2,350 281 04/13/2013 04/14/2013
Personalize Expedia Hotel Searches - ICDM 2013 25,000 517 09/03/2013 11/04/2013
StumbleUpon Evergreen Classification Challenge 5,000 328 08/16/2013 10/31/2013
Personalized Web Search Challenge 9,000 275 10/11/2013 01/10/2014
See Click Predict Fix 4,000 575 09/29/2013 11/27/2013
Allstate Purchase Prediction Challenge 50,000 1,204 02/18/2014 05/19/2014
Higgs Boson Machine Learning Challenge 13,000 1,776 05/12/2014 09/15/2014
Acquire Valued Shoppers Challenge 30,000 2,347 04/10/2014 07/14/2014
The Hunt for Prohibited Content 25,000 966 06/24/2014 08/31/2014
Liberty Mutual Group - Fire Peril Loss Cost 25,000 1,057 07/08/2014 09/02/2014
Tradeshift Text Classification 5,000 714 10/02/2014 11/10/2014
Driver Telematics Analysis 30,000 1,619 12/15/2014 03/16/2015
Diabetic Retinopathy Detection 100,000 698 02/17/2015 07/27/2015
Click-Through Rate Prediction 15,000 1,679 11/18/2014 02/09/2015
Otto Group Product Classification Challenge 10,000 926 03/17/2015 05/18/2015
Crowdflower Search Results Relevance 20,000 1,645 05/11/2015 07/06/2015
Avito Context Ad Clicks 20,000 558 06/02/2015 07/28/2015
ICDM 2015: Drawbridge Cross-Device Connections 10,000 364 06/01/2015 08/24/2015
Caterpillar Tube Pricing 30,000 1,938 06/29/2015 08/31/2015
Liberty Mutual Group: Property Inspection Prediction 25,000 1,271 07/06/2015 08/28/2015
Coupon Purchase Prediction 50,000 631 07/16/2015 09/30/2015
Springleaf Marketing Response 100,000 1,567 08/14/2015 10/19/2015
Truly Native? 10,000 474 08/06/2015 10/14/2015
Rossmann Store Sales 35,000 1,684 09/30/2015 12/14/2015
Homesite Quote Conversion 20,000 2,557 11/09/2015 02/08/2016
Prudential Life Insurance Assessment 30,000 818 11/23/2015 02/15/2016
BNP Paribas Cardif Claims Management 30,000 1,648 02/03/2016 04/18/2016
Home Depot Product Search Relevance 40,000 2,884 01/18/2016 04/25/2016
Santander Customer Satisfaction 60,000 1,138 03/02/2016 05/02/2016
Expedia Hotel Recommendations 25,000 436 04/15/2016 06/10/2016
Avito Duplicate Ads Detection 20,000 1,564 05/06/2016 07/11/2016
Draper Satellite Image Chronology 75,000 475 04/29/2016 06/27/2016

Note: The table only considers submissions by the top 10 teams of each competition. The total reward is
measured in US dollars at the moment of the competition.
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Figure A.1: Estimates for the cost of making a submission

Note: An observation is a contest. Panel A: “Cost of a submission” is the expected cost of making a submission
(i.e., given the distribution of costs we use in our model, the average cost is given by σ/(1+σ)). Since the model
normalizes the value of the prize pool to 1, we have to scale this up by the size of the prize in order to translate
costs to dollars. The median across contests (dashed vertical line) is $642 (USD). Panel B: “Conditional cost
of a submission” is the expected cost conditional on choosing to make a submission. Computing this moment
is computationally intensive. A middle-ground result is an approximation at time 0: Initially players are
symmetric, the gains from a submission are bounded by B = q(s0) · Prize/(number of players), where q(s0)
is the probability of surpassing the maximum score evaluated at the initial score. Thus, we can compute the
conditional mean at time zero explicitly: E[c|c < B] = Bσ+1 · σ/(σ + 1). We report this value for every
contest. The median is $26.6 (USD).
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Table A.2: GMM estimates of model parameters

Competition σ SE λ β0 (q) SE β1 (q) SE GMM Obj. Fun N
Predict Grant Applications 0.0799 0.0005 0.1391 -2.6669 0.0909 -1.3618 0.1938 0.0085 371
RTA Freeway Travel Time Prediction 0.1001 0.0004 0.1658 -0.9835 0.1434 -1.3618 0.1938 0.0013 386
Deloitte/FIDE Chess Rating Challenge 0.054 0.0001 0.1733 -1.5192 0.0541 -1.3618 0.1938 0.0036 342
Heritage Health Prize 0.0279 0.0001 0.7306 -3.5412 0.0461 -1.3618 0.1938 0.0138 2687
Wikipedia Participation Challenge 0.1496 0.0009 0.1686 -3.7402 0.0637 -1.3618 0.1938 0.0149 338
Allstate Claim Prediction Challenge 0.0956 0.0004 0.1837 -0.5781 0.2179 -1.3618 0.1938 0.0012 338
dunnhumbys Shopper Challenge 0.0919 0.0004 0.1263 -1.6724 0.1829 -1.3618 0.1938 0.009 304
Give Me Some Credit 0.0621 0.0003 0.1749 -2.6001 0.0454 -1.3618 0.1938 0.0048 413
Dont Get Kicked! 0.052 0.0001 0.2917 -2.2272 0.107 -1.3618 0.1938 0.0022 880
Algorithmic Trading Challenge 0.0452 0.0001 0.1165 -3.0026 0.0133 -1.3618 0.1938 0.0009 442
What Do You Know? 0.0707 0.0001 0.2062 -2.256 0.0923 -1.3618 0.1938 0.0123 371
Photo Quality Prediction 0.0168 0.0003 0.0444 -1.7916 0.0974 -1.3618 0.1938 0.0008 223
Benchmark Bond Trade Price Challenge 0.0653 0.0002 0.1899 -2.8435 0.0187 -1.3618 0.1938 0.003 456
KDD Cup 2012, Track 1 0.0873 0.0001 1 -1.6961 0.1663 -1.3618 0.1938 0.0177 1267
KDD Cup 2012, Track 2 0.1245 0.0003 1 -2.134 0.1743 -1.3618 0.1938 0.0005 864
Predicting a Biological Response 0.0382 0.0002 0.1824 -3.432 0.0259 -1.3618 0.1938 0.005 651
Online Product Sales 0.0552 0.0001 0.1202 -2.9822 0.0333 -1.3618 0.1938 0.0062 418
EMI Music Data Science Hackathon - July 21st - 24 hours 0.0001 0.0001 0.023 -1.3017 0.1215 -1.3618 0.1938 0.0913 109
Belkin Energy Disaggregation Competition 0.0605 0.0002 0.2418 -1.7264 0.0767 -1.3618 0.1938 0.0021 607
Merck Molecular Activity Challenge 0.0337 0.0384 0.1222 -1.8376 0.1146 -1.3618 0.1938 0.0011 415
U.S. Census Return Rate Challenge 0.0599 0.0001 0.1435 -2.1342 0.0548 -1.3618 0.1938 0.0497 272
Amazon.com - Employee Access Challenge 0.0158 0.0001 0.1263 -2.5885 0.0863 -1.3618 0.1938 0.0008 755
The Marinexplore and Cornell University Whale Detection Challenge 0.1225 0.0004 0.236 -2.0254 0.0968 -1.3618 0.1938 0.0022 326
See Click Predict Fix - Hackathon 0.0001 0.0001 0.0183 -2.3371 0.1248 -1.3618 0.1938 0.1398 262
KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 0.0095 0.0001 0.1081 -1.7064 0.0846 -1.3618 0.1938 0.0005 623
Influencers in Social Networks 0.0001 0.0001 0.04 -2.1596 0.0896 -1.3618 0.1938 0.0046 281
Personalize Expedia Hotel Searches - ICDM 2013 0.0213 0.0001 0.1246 -1.2842 0.1194 -1.3618 0.1938 0.0043 517
StumbleUpon Evergreen Classification Challenge 0.0857 0.0001 0.1523 -2.5777 0.096 -1.3618 0.1938 0.0496 328
Personalized Web Search Challenge 0.2166 0.0007 0.9134 -2.1926 0.0646 -1.3618 0.1938 0.002 275
See Click Predict Fix 0.0046 0.0001 0.1199 -1.5334 0.0946 -1.3618 0.1938 0.0002 575
Allstate Purchase Prediction Challenge 0.0555 0.0001 0.4519 -3.1441 0.0473 -1.3618 0.1938 0.0006 1204
Higgs Boson Machine Learning Challenge 0.0648 0.0001 0.6307 -3.3141 0.0994 -1.3618 0.1938 0.0042 1776
Acquire Valued Shoppers Challenge 0.0148 0.0003 0.4759 -2.3999 0.1707 -1.3618 0.1938 0.0045 2347
The Hunt for Prohibited Content 0.032 0.0001 0.2731 -2.7914 0.0649 -1.3618 0.1938 0.0043 966
Liberty Mutual Group - Fire Peril Loss Cost 0.0367 0.0001 0.2825 -2.075 0.1316 -1.3618 0.1938 0.0011 1057
Tradeshift Text Classification 0.0372 0.0005 0.197 -1.9588 0.0297 -1.3618 0.1938 0.0018 714
Driver Telematics Analysis 0.0735 0.0001 0.4571 -4.2049 0.1214 -1.3618 0.1938 0.0018 1619
Diabetic Retinopathy Detection 0.0889 0.0001 0.8012 -1.6264 0.1974 -1.3618 0.1938 0.0114 698
Click-Through Rate Prediction 0.0395 0.0001 0.4162 -3.2616 0.0314 -1.3618 0.1938 0.0012 1679
Otto Group Product Classification Challenge 0.0232 0.0001 0.187 -2.5233 0.0229 -1.3618 0.1938 0.0006 926
Crowdflower Search Results Relevance 0.0129 0.0001 0.2806 -2.8256 0.105 -1.3618 0.1938 0.0012 1645
Avito Context Ad Clicks 0.0612 0.0001 0.2814 -2.2102 0.0146 -1.3618 0.1938 0.0004 558
ICDM 2015: Drawbridge Cross-Device Connections 0.0684 0.0001 0.1687 -0.9735 0.192 -1.3618 0.1938 0.0051 364
Caterpillar Tube Pricing 0.0172 0.0001 0.3166 -3.0875 0.0277 -1.3618 0.1938 0.0004 1938
Liberty Mutual Group: Property Inspection Prediction 0.0233 0.0001 0.2667 -3.1092 0.06 -1.3618 0.1938 0.0009 1271
Coupon Purchase Prediction 0.1222 0.0003 0.3848 -2.0006 0.2093 -1.3618 0.1938 0.0027 631
Springleaf Marketing Response 0.0326 0.0001 0.332 -3.0862 0.0708 -1.3618 0.1938 0.0009 1567
Truly Native? 0.0526 0.0002 0.2073 -2.5242 0.0917 -1.3618 0.1938 0.0067 474
Rossmann Store Sales 0.0185 0.0001 0.3775 -3.3451 0.0452 -1.3618 0.1938 0.0015 1684
Homesite Quote Conversion 0.0223 0.0001 0.4559 -3.1196 0.0355 -1.3618 0.1938 0.0009 2557
Prudential Life Insurance Assessment 0.0749 0.0006 0.4219 -3.0026 0.0449 -1.3618 0.1938 0.002 818
BNP Paribas Cardif Claims Management 0.026 0.0001 0.3757 -3.2909 0.0187 -1.3618 0.1938 0.0013 1648
Home Depot Product Search Relevance 0.0147 0.0001 0.4918 -2.9788 0.0701 -1.3618 0.1938 0.002 2884
Santander Customer Satisfaction 0.0218 0.0001 0.3059 -2.2694 0.0479 -1.3618 0.1938 0.0021 1138
Expedia Hotel Recommendations 0.1011 0.0001 0.2814 -1.7786 0.0485 -1.3618 0.1938 0.0005 436
Avito Duplicate Ads Detection 0.0242 0.0001 0.3346 -2.4246 0.0583 -1.3618 0.1938 0.0006 1564
Draper Satellite Image Chronology 0.0857 0.0002 0.1188 -3.6358 0.0019 -1.3618 0.1938 0.0025 475

Notes: The table reports the GMM estimates with bootstrapped standard errors.
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Table A.3: Probability of the hybrid prize structure being the optimal structure: Probit estimates

hybrid
(1)

σ (submission cost parameter) -17.906∗∗

(7.713)

λ (frequency of submission opportunities) 6.135∗∗

(2.528)

β0 (qs function) 0.806∗∗

(0.407)
Observations 57
R2

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. This probit model
is for the probability that the hybrid prize structure is the optimal prize structure for a contest (with the
alternative being that the optimal prize structure is the one with 6 prizes). The covariates are parameter
estimates. An observation is a contest.

Table A.4: Uniform prize structure

2 prizes 30% of prize at t = 0.5, 70% of prize at t = 1
4 prizes 10%, 20%, 30%, and 40% of prize at times

t = .25, t = .5, t = .75, and t = 1, respectively
6 prizes 5%, 10%, 15%, 20%, 25%, and 25% of prize at times

t = 1/6, t = 2/6, t = 3/6, t = 4/6, t = 5/6, and t = 1, respectively
2 timed prizes 25% of prize at t = 0.68 and 75% of prize at t = 1
Benckmark 100% of the prize to the first player

who surpasses the milestone score 1.175
Hybrid 70% of prize at t = 1, 30% to the first player

who surpasses the milestone score 0.375

Notes: The table summarizes the optimal prize (within each class) subject to the constraint that all contests
have the same prize structure.
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Table A.5: Prize structure impacts on contest outcomes

Min. score
OLS Quant. Reg. OLS Quant. Reg.
(1) (2) (3) (4)

2 prizes 0.026 -0.034 0.026 -0.043
(0.063) (0.027) (0.064) (0.034)

Hybrid -0.054** -0.037* -0.055** -0.040*
(0.026) (0.019) (0.027) (0.022)

Controls No No Yes Yes
N 80 80 80 80
R2 0.030 0.005 0.082 0.042
Mean dep. variable 0.174 0.174 0.174 0.174
Std. dev. dep. variable 0.191 37.549 0.191 37.549

Notes: An observation is a contest. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01. “Quant. Reg.” is a quantile regression for the median. Controls include all covariates reported in
Table 5.

Table A.6: Number of submissions in the last two days of the contests (i.e., days 10 and 11)

# of submissions
(1) (2)

Min. score at day 9 -9.835* -11.819*
(5.601) (6.274)

2 prizes -8.381** -7.578*
(4.063) (4.095)

Hybrid/bechmark -9.002** -9.586**
(4.124) (4.217)

Controls No Yes
N 78 78
R2 0.095 0.134

Notes: An observation is a contest. Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01. Controls include all covariates reported in Table 5.
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B Description of the Experiment

In this section, we reproduce the instructions given to all contest participants, regardless of
the group they were randomly assigned to.

Description of the Competition

A large restaurant chain owns restaurants located along major highways. The average revenue
of a restaurant located at distance x from the highway is R(x). For simplicity, the variable
distance to the highway is normalized to be in the interval [1,2]. The function R(x) is
unknown. The goal of this competition is to predict the value of R(x) for several values of
distances to the highway. Currently, the restaurant chain is located at 40 different locations.
You will have access to

{(xi, R(xi))}30
i=1,

i.e., the distance to the highway and average revenue for 30 of these restaurants. Using these
data, you must submit a prediction of average revenue for the remaining 10 restaurants, using
their distances to the highway.

You will find the necessary datasets in the Data tab. You can send up to 10 different
submission each day until the end of the competition. The deadline of the competition is
Sunday September 26th at 23:59:59.

Evaluation

We will compare the actual revenue and the revenue predictions for each value

(xj)40
j=31.

The score will be calculated according to the Root Mean Square Deviation:

RMSD =

√√√√∑40
j=31(R̂(xj) − R(xj))2

10 ,

which is a measure of the distance between your predictions and the actual values R(x). The
deadline of the competition is Sunday September 27th at 23:59:59.

Note. Following the convention used throughout the paper, we multiplied the RSMD scores
by minus one to make the winning score maximize private score in the competition.
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Description of the Data

The goal of this competition is to predict the value of R(x) for a number of values of distance
to the highway. The csv file “train” contains data on the distance to the highway and average
revenue for 30 restaurants

{(xi, R(xi))}30
i=1,

You can use these data to create predictions of average revenue for the remaining 10 restau-
rants. For these 10 restaurants you only observe their distances to the highway in the csv
file “test.” You can find an example of how your submission must look like in the csv file
“sample_submission.”

File descriptions:

• train.csv - the training set

• test.csv - the test set

• sample_submission.csv- an example of a submission file in the correct format

Submission File:
The submission file must be in csv format. For every distance to the highway of the 10
restaurants, your submission files should contain two columns: distance to the highway (x)
and average revenue prediction (R). The file should contain a header and have the following
format:

x R
1.047579 34.43375
1.926801 36.83077

etc.

A correct submission must be a csv file with one row of headers and 10 rows of numerical
data, as displayed above. To ensure that you are uploading your predictions in the correct
format, we recommend that you upload your predictions by editing the sample submission
file. There is a limit of 10 submissions per day.

Figure C.1 shows a screenshot of the leaderboard in one of our student competitions hosted
on Kaggle.
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Figure C.1: Snapshot of the leaderboard in one of our competitions with a leaderboard. Names
are hidden for privacy reasons.
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