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Abstract

We propose an empirically tractable method to estimate economies of scale and

scope. We start from a micro-founded model of production by a multi-product firm

and generate a set of estimating equations for the parameters governing scale and scope

economies, together with the distribution of within-firm productivity. A strength of

the method is that all parameters can be estimated using demand-side data only (i.e.,

quantities, prices, demand shifters). We apply this approach to the U.S. beer industry

to quantify the importance of scope economies for productive efficiency and evaluate

the impact of scale and scope economies on merger analysis.
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1 Introduction

Multiproduct firms have come to dominate industrial production (Bernard et al., 2010;

Goldberg et al., 2010). Economies of scope—cost savings that arise due to the scope of

production—have been proposed as one explanation for the existence of multiproduct firms

and for production to be consolidated (Panzar and Willig, 1975; Teece, 1980; Panzar and

Willig, 1981). Are economies of scope and scale empirically relevant for a firm’s decision to

expand its horizontal boundaries? Does producing more varieties and consolidating produc-

tion in fewer plants lead to significant cost savings?

Quantifying economies of scale and scope also has practical relevance for antitrust prac-

titioners. Investigating the competitive impact of a merger between multiproduct firms will

generally require assessing a set of (in)efficiencies that go beyond the Williamson tradeoff

(Williamson, 1968). For example, the price effects of a merger may lead to a decrease in the

scale of production of the merging firms, potentially increasing marginal costs of production

due to a loss in scale economies. As well, the merging firms’ plants may increase the varieties

produced if they produce the products of their merging partners, potentially creating scope

economies. Do omitting these scale and scope effects substantially change the conclusions of

merger evaluations?

Tackling these and other applied questions requires a methodology to estimate scale

and scope economies. To this end, we propose a new method to estimate scale and scope

economies suitable for applied work. We start by setting up a multiproduct cost function

at the plant level. The technology allows for (but does not impose) economies of scale and

scope at the plant level, meaning that it can be more cost-effective to manufacture multiple

products within the same plant rather than producing them in separate plants. Following

Baumol et al. (1982), we show that this cost function can be derived from a production

technology relying on non-rival inputs, e.g., managerial tasks, or machinery that can be used

to produce many products simultaneously, which give rise to scope economies. The model

allows for multiple plants per firm, multiple cities, and transportation costs that make it

costly for a firm to ship goods from a plant to a city.

Our methodology has two key strengths. First, we show that we can identify and estimate

all the parameters of the multiproduct cost function using demand-side data only (i.e.,

quantities, prices, demand shifters). No data on inputs, input allocation across products,

or input prices is needed. This makes our method relatively easy to implement for industry

studies where researchers have access to the data needed to estimate a demand system.

Second, multiproduct cost functions can suffer from a dimensionality problem, as the function

must specify how an increase in the quantity of product j impacts the marginal cost of
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product k. This may create a practical problem for the econometrician—in particular, when

the set of products is large—since estimation requires one instrument per parameter in the

model. We tackle this issue using a parsimonious micro-founded model where two parameters

govern scale and scope economies.

Using the marginal cost function for each product, we derive two equations that are

linear in the key technology parameters governing scale and scope economies, which makes

estimation appear straightforward. However, estimation requires us to resolve two econo-

metric challenges. First, econometricians rarely observe marginal costs in their data. We

propose overcoming this issue by estimating the marginal cost for each product using the

demand-side approach, pioneered in Rosse (1970), and further developed by Berry et al.

(1995), Nevo (2000), and Berry and Haile (2014). The two key elements of this approach

are demand system estimates and a product market game specification. Using the system of

first-order conditions for profit maximization evaluated at the observed prices, we can recover

point estimates of the marginal costs. We can use these marginal costs and the observed

output levels together with our marginal cost model to estimate the production parameters

of interest.

The second challenge we face is that estimating production parameters using a standard

ordinary least squares (OLS) methodology will likely introduce bias due to endogeneity

issues. These issues are associated with firms making decisions about the output level for

each product while considering the unobserved productivity of the corresponding product

line. To tackle this concern, we note that the output levels are determined by the interaction

of supply-side and demand-side forces through firms’ pricing first-order conditions. We,

therefore, propose using demand-side taste shocks as instruments, which can be computed

based on demand model estimates. As noted, the parsimony of the model also restricts the

number of instruments needed, which is a practical strength of our method.

Having solved these two challenges, we identify the magnitude of scale and scope economies

by comparing the production technology’s returns to scale (i.e., the sum of the output elas-

ticities of all inputs) with the sum of the output elasticity of rival inputs. If the returns to

scale are greater than the output elasticity of rival inputs, then this suggests the existence

of non-rival inputs and, hence, scope economies. We identify returns to scale by examining

how costs change with exogenous increases in output. Although we do not directly observe

rival inputs, we expand on techniques developed in Orr (2022) to identify the share of rival

inputs allocated towards a particular production line. Combining this result with exogenous

variation in product-line specific output shares, allows us to identify the output elasticity of

rival inputs.

We then use our methodology to investigate the existence of scope economies in the US
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beer industry. This industry is ideal for two reasons. First, the main players are multiproduct

firms (e.g., Anheuser-Busch, Molson Coors, SABMiller, Grupo Modelo, among other active

firms in our sample period). Second, firms in the industry produce using a small number

of plants despite high transportation costs. For example, Molson Coors had two plants

(Colorado and Virginia) serving the entire United States up until 2008. This contrasts with

other industries where local production is preferred to save on transportation costs (e.g.,

the US carbonated beverage industry). These facts combined are consistent with scale and

scope economies at the brewery level.

Our main data source is the IRI Marketing Dataset (Bronnenberg et al., 2008), which

provides price and sales data at the store–week–product level, where a product is defined

as a brand–size combination (e.g., Budwesier, 6-pack). We focus on the years 2005 to 2008.

Given that our study periods overlap, we make use of the demand system estimates in Miller

and Weinberg (2017).

Our estimates for the US beer industry suggest the existence of both scale economies and

scope economies. We use these estimates to address several economic questions of interest.

In the first counterfactual analysis, we measure the impact of scope economies on productive

efficiency and market outcomes. We shut down scope economies (keeping all other aspects of

the production technology fixed, including scale economies) and compute equilibrium market

outcomes.

How do scope economies impact pricing and production decisions? On the one hand,

the increase in the marginal cost of a product caused by the shutdown of scope economies

decreases the marginal incentive to sell an extra unit of that good, incentivizing a price in-

crease. On the other hand, our estimates suggest the existence of economies of scale, making

it costly to cut down production, as this would further inflate marginal costs. Economies of

scale make price increases costly, creating a tradeoff.

The comparison of equilibria suggests that shutting down scope economies increases

marginal costs by 33.9 percent on average relative to the equilibrium with scope economies.

The effect on marginal costs is magnified by a decrease in output (market shares decrease

on average by 2.2 percent). That is, scope economies are stronger than scale economies for

production decisions because firms choose to cut production despite scale economies. We

also find that prices increase by 19.8 percent on average in the equilibrium without scope

economies. These findings combined suggest that scope economies have a first-order effect

on productive efficiency—providing an (at least partial) explanation for why multiproduct

production is favored in this industry—and market outcomes.

We then explore the role of scope and scale economies in merger analysis. We simulate

the impact of the joint venture between CoorsMolson and SABMiller, which took place in

4



2008. One efficiency that was cited is that CoorsMolson and SABMiller would be able to

leverage the breweries of the other firm, which would on average decrease the distance that

the products of both firms would need to travel to reach consumers. Our model captures

this efficiency gain but also captures an inefficiency that is a direct consequence of this: as

production becomes more fragmented (i.e., less output per brewery), firms miss out on scale

and/or scope economies. This inefficiency may lessen or overwhelm the shipping cost savings

of producing closer to consumers.

A comparison of the equilibria with and without the joint venture shows that the marginal

costs of MillerCoors decreased by 6.5 percent on average. This combined effect is a result of

multiple factors: cost decreases due to (i) scope economies as brewing facilities expand their

range of products, (ii) transportation cost savings, and (iii) production being reallocated to

more efficient breweries. However, these decreases are strongly attenuated by the decrease

in brewery-level scale, with many breweries shipping to fewer markets and pulling back

production in order to enable price raises. Eventually, these cost increases and the enhanced

market power of the merged company result in an increase in prices of 2.2% percent (although

the estimate is noisy) and a 1.8% decrease in the market share of MillerCoors products, on

average. These average effects, however, mask significant heterogeneity across products and

markets. Overall, these findings highlight that scale and scope economies are relevant for

analyzing mergers, especially where production occurs across multiple plants.

The rest of the paper is organized as follows. Section 2 presents the literature review. The

model is discussed in Section 3, and we present our identification and estimation strategy

in Section 4. Section 5 describes our empirical application, which is the U.S. beer industry.

Section 6 concludes.

2 Literature Review

We contribute to several strands in the literature. First, we contribute to the literature on

testing for the existence of non-joint production and scope economies. Previous approaches

have either relied on cost function estimation using firm-level cost data (Hall 1973, Kohli

1981, Baumol et al. 1982, Johnes 1997, Zhang and Malikov 2022) or estimation of multi-

output technologies using transformation functions (Dhyne et al. 2022, Maican and Orth

2020). These approaches require high-quality data on inputs and costs, which in practice is

difficult to find for many industries, and may be prone to measurement error.1 Our paper,

on the other hand, provides a way to test for and quantify non-joint production by relying

only on demand-side data, i.e. prices, quantities, and market shares. Importantly, we do

1See, for example, the recent discussion in De Loecker and Syverson (2021).

5



not require that a researcher have access to any input or cost data. Instead, our approach

builds on the demand-side approach to cost estimation, pioneered in Rosse (1970), and

further developed by Berry et al. (1995), Nevo (2000), and Berry and Haile (2014), where

a firm’s pricing first order conditions are used to back out point estimates of marginal cost.

We consider a simple parameterization of a firm’s cost function that allows for joint and

non-joint production and show how to generate simple estimating equations for parameters

governing scale and scope economies.2

In this sense, our paper is closely related to Ding (2022) and Argente et al. (2020), who

also provide evidence of scale and scope economies. While we share an interest in many of

the same questions, we differ from these papers in a number of important ways. To estimate

and quantify scale and scope economies, Ding (2022) proposes a model of joint production

driven by public inputs that generate ideas that can be applied to various industries within

a multi-industry conglomerate. Argente et al. (2020) considers an alternative model where

a firm can invest in firm-wide or product-specific knowledge. Our model largely differs from

these papers by relying on a microfoundation for joint production based on public or non-

rival production inputs, as in Baumol et al. (1982), rather than scope economies generated

by knowledge or idea generation. We also provide a complementary “micro” study—focused

on a single industry, beer—to complement the more aggregate “macro”, across-industry,

approach employed in these studies.

Second, we contribute to the body of work investigating various productivity and com-

petition issues in the US beer industry (Ashenfelter et al., 2015; De Loecker and Scott, 2016;

Miller and Weinberg, 2017; Grieco et al., 2018; Miller et al., 2021). Our key contribution is

to investigate the existence of scope economies and study their implication for efficiency and

market outcomes, which sets us apart from prior work. Fan and Yang (2022) also investigate

the existence of scale and scope economies in the US beer industry. Their work complements

ours as they study scale and scope economies based on fixed costs of entering a market (i.e.,

entry may have a firm and product-specific cost), and they estimate entry costs based on

observed entry decisions. Our papers differ in the source of scale and scope economies (re-

turns to scale in variable and non-rival inputs versus fixed costs) and the variation used to

estimate scope economies (prices versus entry decisions).

Finally, we contribute to the literature on synergies in mergers and acquisitions. While

merger-related synergies represent one of the central concerns in antitrust, empirical studies

2The particular form of the cost function we rely on has been used in previous literature (Baumol et al.
1982, Johnes 1997). However, our estimation approach is more flexible than previous approaches, since we
explicitly allow for the existence of firm-product-market specific shocks to productivity, which we are able
to recover naturally using our marginal cost inversion, relying on insights from Orr (2022) and Cairncross et
al. (2023).
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in this area are surprisingly limited (Asker and Nocke, 2021). We contribute to a handful

of studies investigating merger-related efficiencies (for example, Jeziorski, 2014,Ashenfelter

et al., 2015, Grieco et al., 2018, Elliott et al., 2023; see an overview in Asker and Nocke,

2021). While many of these studies are relatively context-specific, our approach has the

potential to be applied more broadly. Within this literature, our paper is closest to Grieco

et al. (2018). Both studies enable the forecasting of post-merger changes in marginal costs

using solely pre-merger data, which is particularly valuable from an antitrust perspective.

An important distinction is that while Grieco et al. (2018) focuses on scale economies, our

analysis also incorporates the economies of scope. Moreover, while Grieco et al. (2018) relies

on input data, our method solely requires demand-side data, which is already commonly

used in merger evaluations.

3 A Model of Supply with Scale and Scope

Standard demand estimation approaches to merger analysis (e.g. Hausman et al. 1994,

Nevo 2000, among others) often assume that firms face constant marginal costs of production

following an ownership change. This requires abstracting from both economies of scale and

scope in variable costs, both of which can have important effects on post-merger outcomes.

For example, when economies of scale matter, post-merger upward pricing pressure has a

further effect on firms’ costs; specifically, as price increases decrease the firm’s overall scale,

costs can rise, which decreases efficiency and may lead to greater price increases. Similarly, if

economies of scope matter, where costs of production fall as firms produce many varieties due

to input sharing, there may be efficiency gains that counterbalance upward pricing pressure

in some mergers.

The key benefit to assuming constant returns to scale is the empirical tractability, as

supply-side parameters necessary to simulate merger counterfactuals are exactly identified

when demand and each firm’s pricing rule are known. For example, for the standard case

of Bertrand-Nash price competition, the set of pricing first-order conditions that must be

satisfied can be written in matrix form as follows:

Qct +∆ct (Pct − MCct) = 0, (1)

where (Qct,Pct) are vectors of quantities and prices charged in each market c at time t, MCct

is a vector of marginal costs, and ∆ct is the element-by-element product of two matrices;

a matrix of cross-price derivatives for the firm’s demand system (∂ct) with typical element

(k, n) equal to
∂Qk

ct

∂Pn
ct
, and an ownership matrix (Oct) where element (k, n) equals 1 if product
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k and n are produced by the same firm, zero otherwise.

Typically in this setting, the econometrician observes (Qct,Pct), using which they can

obtain ∆ct using demand estimation techniques. Marginal costs MCct are known to the firms

but not the econometrician. An estimate of the vector of marginal costs can be obtained by

inverting the system of first-order conditions, yielding:

MCct = Pct +∆−1
ct Qct (2)

Equation (2) provides exactly one marginal cost value for each specific combination of

market, time period, firm, and product that rationalizes the firm’s pricing decisions under

a particular conduct assumption. Under the further restriction of constant marginal cost,

knowing this number is sufficient for merger counterfactuals, as marginal costs are invariant

to the scale of production, as well as the set of products produced.

However, with scale and scope economies, point identifying marginal costs through (2)

is no longer sufficient for counterfactual analysis. Rather, marginal costs will generally be

functions of the scale of own production line (due to scale economies), as well as the scale of

other production lines (due to scope economies). As a result, these marginal cost functions

need to be identified to conduct counterfactual merger analysis.

We show that it is possible to estimate a marginal cost function with scale and scope

economies by adding two extra steps to the standard approach discussed above. For this

purpose, we rely on the following CES cost function (Baumol et al. 1982, Johnes 1997),

which we define over the set of products j produced at a particular production location b at

time t:3

Cbt(Ybt,Abt,Wbt) = g(Wbt)

∑
j∈Jbt

(
Y j
bt

Aj
bt

) 1
α


α
ϕ

(3)

where Jbt denotes the set of products produced in location b at time t, Wbt is a vector of input

prices faced in location b at time t, Ybt = {Y j
bt}j∈Jbt , is the vector of outputs j produced,

Abt = {Aj
bt}j∈Jbt is a vector of product-specific productivity shifters, and g(.) is a homogenous

of degree one function. This functional form specification offers several advantages. First,

it allows for scale and scope economies in a tractable manner.4 Second, it is micro-founded

3b stands for brewery, as in our empirical application below. However, our model can be applied in many
other settings.

4One straightforward alternative would be a flexible polynomial function that includes interaction terms
for outputs from different product lines. However, this approach has its drawbacks, including a signifi-
cant practical limitation: as the product count grows, it becomes increasingly susceptible to the curse of
dimensionality.
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(see Appendix B), allowing for a clear interpretation of the parameters outlined below.

The technology parameters ϕ and α govern the magnitude of scale and scope economies.

We show this formally in Appendix B, where we provide a derivation of this cost func-

tion based on the primal representation of a firm’s technology using product-line specific

production functions that allow for non-rival inputs in production; e.g. managerial inputs

or machinery that can be used to produce many products simultaneously. This derivation

allows us to provide a clear interpretation of the parameters α and ϕ. In particular, ϕ is

equal to the returns to scale of the product-level production function, while βp ≡ ϕ − α

captures the intensity of public, non-rival tasks in production. If βp ≡ ϕ − α = 0, then the

technology simplifies to the standard case of non-joint production, where there are no cost

inter-dependencies across products.

Importantly, this technology generates economies of scope— i.e. it is cheaper to produce

multiple outputs in the same location than in multiple locations with the same underlying

productivity parameters — whenever βp = ϕ − α > 0. We show this formally through the

following Lemma.

Lemma 1 For a given vector of outputs Ybt > 0, let Yj
bt denote a corresponding vector of

outputs where all elements are zero except for the j’th element which equals Y j
bt > 0 from

Ybt. Then,

• C(Ybt,Abt,Wbt) <
∑

j∈Jbt C(Y
j
bt,Abt,Wbt) if ϕ > α.

• C(Ybt,Abt,Wbt) =
∑

j∈Jbt C(Y
j
bt,Abt,Wbt) if ϕ = α;

• C(Ybt,Abt,Wbt) >
∑

j∈Jbt C(Y
j
bt,Abt,Wbt) if ϕ < α.

Proof. See Appendix A

Note that the cost function C(Yj
bt,Abt,Wbt) corresponds to the cost function for a single-

product firm producing Y j
bt. Lemma 1 shows that when ϕ > α, C(Ybt,Abt,Wbt) will be

strictly smaller than the cost of producing the vector Ybt through J separate production

processes. As a result, economies of scope mean that production costs are lower when firms

produce multiple products together, potentially providing a rationale for firms to consolidate

the production of many products in a single location. On the other hand, when ϕ = α, the

firm essentially operates J separate production processes, and as a result, there are no cost

savings to producing multiple goods together. Finally, the case ϕ < α involves diseconomies

of scope, where production costs rise when a firm produces many outputs.5

5We do not expect this case to arise empirically since, in these situations, a firm would choose to operate
the J independent product lines, which would generate lower costs.
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The model also allows for transportation cost, which is one of the margins of adjustments

that can be relevant for counterfactual analysis if firms reallocate their products across

locations. In order to take the transportation costs into account, we distinguish between

total quantities produced at a location b, Y j
bt and the total quantities shipped and sold to

a particular market c (e.g. a city), which we will denote by Qj
ct. To allow for distribution

costs associated with shipping goods from the production location b to final consumers in

city c, we assume that shipping across locations is constrained by product-specific iceberg

trade costs, where τ jbct ≥ 1 units of a good must be shipped to market (c, t) for each unit of

the good to arrive.6 More formally, if a firm wishes to sell outputs {Qj
ct}c across each city c,

then total output at the production location b, Y j
bt must satisfy:

Y j
bt =

∑
c

Qj
ctτ

j
bct = Qj

ct exp(λZ
j
bct + τ̃ jbct) (4)

where Zj
bct is a vector of observables that affect transportation costs (e.g. distance from the

city), and τ̃ jb(i)ct are transportation costs that are unobservable to the econometrician.

Combining (4) with (3) yields the following cost function defined over the outputs chosen

by firm i for sale in each city c, Qbt:

Cbt(Qbt,Abt,Wbt) = g(Wbt)

∑
j∈Jbt

∑
c∈Cj

bt

Qj
ct

Ωj
bct

 1
α


α
ϕ

(5)

where Ωj
bct ≡

Aj
bt

τ jbct
is transportation-cost adjusted productivity in market c for product j, and

Cj
bt denotes the set of cities where production location b ships product j.

Note that the potential existence of scale in equation (5) generates cross-market interac-

tions in costs. In particular, if there are scale economies at the product level, so ϕ > 0, then

equation (5) implies that costs will fall in the city c if the output is scaled up in markets

c′ ̸= c. This also generates potential efficiency gains by consolidating production in a single

location.

Given this cost function, the pricing game we assume for each firm is standard, i.e. static

Nash-Bertrand pricing. Specifically, each firm i chooses the price of each product j in each

6This modelling assumption generates cost functions that are multiplicative in transportation costs — as
is assumed in Miller and Weinberg (2017), for example — and is standard in quantitative spatial models;
see Costinot and Rodŕıguez-Clare (2014) or Redding (2022).
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city c to maximize its profits, given the prices of its rivals:

max
{P j

cit}(j,c)∈(⋃c∈C Jict)

∑
c∈C

∑
j∈Jct

P j
ctQ

j
ct(Pct)−

∑
b∈Bi

Cbt (Qbt(Pt),Abt,Wbt) , (6)

where Jict denotes the set of products j produced by firm i that are sold in city c, and

Qbt(Pt) denotes the vector of demands for all products and cities served by brewery b, which

depends on the equilibrium price vector. In the equilibrium, each element Qj
ct(Pct) of the

vector is equal to the quantity supplied for each product and market.

The equilibrium vector of prices Pt, solves the system of first-order conditions,

Qj
ct +

∑
k∈Jict

P k
ct −

∂Cb(k,c)t (Qbt(Pt),Abt,Wbt)

∂Qk
ct︸ ︷︷ ︸

≡MCj
it(Qbt(Pt),Abt,Wbt)

 ∂Qk
ct(Pct)

∂P j
ct

= 0, ∀j ∈ Jcit,∀i,∀c (7)

where b(k, c) denotes the location where product k sold in market c is produced, and given

(5), marginal cost functions are given by:

MCj
ct (Qbt(Pt),Abt,Wbt) =

1

ϕ
g(Wbt)

∑
j∈Jbt

∑
c∈Cj

bt

Qj
ct

Ωj
bct

 1
α


α
ϕ
−1∑

c∈Cj
bt

Qj
ct

Ωj
bct

 1
α
−1

1

Ωj
bct

(8)

Equations (7) and (8) nest the standard case considered in many empirical merger papers

of Bertrand-Nash pricing with constant marginal costs when α = ϕ = 1, in which case

MCj
ct = g(Wbt)

Aj
bt

. Note, however, that even if there are nonconstant marginal costs as in

(8), equations (1) and (2) continue to hold at the equilibrium values of each firm-product’s

marginal cost.7 We shall use this property of the model to help identify the marginal cost

function in the following section.

4 Estimation of Scale and Scope Economies

Having specified the pricing game and each firm’s cost function, we now turn to the

estimation of the marginal cost function specified in (8). For this purpose, it will be useful

be rewrite that function as follows:

7While this model generates across market interactions through the marginal cost function, these do not

show up in ∆ct since
∂Qk

ct(Pct)

∂P j

c′t
= 0 for c′ ̸= c.
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MCj
ct =

g(Wbt)

ϕΩ
1
ϕ

bt︸ ︷︷ ︸
≡Kbt

∑
j∈Jbt

∑
c∈Cj

bt

Qj
ct

Ω̂j
bct

 1
α


α
ϕ
−1∑

c∈Cj
bt

Qj
ct

Ω̂j
bct

 1
α
−1

1

Ω̂j
bct

(9)

where we substitute Ωj
bct = ΩbtΩ̂

j
bct, where lnΩbt ≡ 1∑

j∈Jbt
|Cj

bt|

∑
j∈Jbt

∑
c∈Cj

bt
lnΩj

bct and

ln Ω̂j
bct ≡ lnΩj

bct − lnΩbt. Finally, Kbt ≡ g(Wbt)/ϕΩ
1
ϕ

bt shifts the marginal costs of all

products equally. It is possible to fully recover the marginal cost function for the pur-

pose of running counterfactuals by estimating (α, ϕ, {Ω̂j
bct}(j,b,c,t)), as well as the components

of {Kbt}(b,t). Notice that since Ω̂j
bct =

Aj
bt

Ωbtτ
j
bct

=
Aj

bt

Ωbt exp(λZ
j
bct+τ̃ jbct)

, additionally estimating(
λ, {Aj

bt

Ωbt
}(j,b,t), {τ̃ jbct}(j,b,c,t)

)
allows to study how marginal cost, as well as equilibrium prices

and quantities change with distance.

Note that equation (2) allows us to recover an estimate of the equilibrium value of each

product’s marginal cost MCj
ct ≡

∂Cb(j,c)t(Qbt)

∂Qj
ct

. The following subsection describes a step-by-

step procedure that uses these values together with the equilibrium (observed) quantities

Qj
ct within the equation (9) in order to estimate all the parameters described above.

Step 1.

To generate an estimating equation for (α, {Ω̂j
bct}(j,b,c,t)), first multiply equation (9) by

Qj
ct, and divide this expression by its sum over all c ∈ Cj

bt:

MCj
ctQ

j
ct∑

c∈Cj
bt
MCj

ctQ
j
ct

=

Qj
ct

Ω̂j
bct∑

c∈Cj
bt

Qj
ct

Ω̂j
bct

(10)

Second, use the sum over c ∈ Cj
bt, and divide it by the sum over both c ∈ Cj

bt and j ∈ Jbt,
yielding:

∑
c∈Cj

bt
MCj

ctQ
j
ct∑

j∈Jbt

∑
c∈Cj

bt
MCj

ctQ
j
ct

=

(∑
c∈Cj

bt

Qj
ct

Ω̂j
bct

) 1
α

∑
j∈Jbt

(∑
c∈Cj

bt

Qj
ct

Ω̂j
bct

) 1
α

=


∑

c∈Cj
bt

Qj
ct

Ω̂j
bct

Qbt


1
α

(11)

where
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Qbt =

∑
j∈Jbt

∑
c∈Cj

bt

Qj
ct

Ω̂j
bct

 1
α


α

(12)

is a location-level output aggregator. As shall be clear in a moment, the first stage estimating

equation will allow us to estimate this object, which will then be a key ingredient for our

second stage estimating equation.

Using equation (10) to rewrite the numerator in (11) and then rearranging, we can

generate the following estimating equation:

lnQj
ct = α lnSj

bt + lnS
c|j
bt + lnQbt + ln Ω̂j

bct (13)

where Sj
bt ≡

∑
c∈Cj

bt

MCj
ctQ

j
ct∑

j∈Jbt

∑
c∈Cj

bt

MCj
ctQ

j
ct

and S
c|j
bt =

MCj
ctQ

j
ct∑

c∈Cj
bt

MCj
ctQ

j
ct

. Appendix B shows that within

the model of public and private tasks, α represents the output elasticity of private or rival

inputs, while in Appendix C, we show that Sj
bt represents the share of rival inputs allocated

towards product j; a novel extension to the identification result in Orr (2022) to a setting

with non-joint production.

From this expression, we can see that α is identified from the variation in this share

while keeping constant the total location-level output Qbt. In other words, α is identified by

reallocating rival inputs towards product j and evaluating how much the output of product

j scales up as a result. Note that in practice, since Qbt is not known as it depends on α, we

can still estimate the parameter using linear regression by differencing Qbt out and relying

on the within-location variation.

Identification of α requires exogenous variation in Sj
bt. However, both components of Sj

bt,

specifically Qj
ct and MCj

ct, directly depend on Ω̂j
bct, which suggests the need for instruments.

To find appropriate instruments, note that Qj
ct is determined by the interaction of both

supply side and demand-side forces through a firm’s pricing first-order conditions (7). In

other words, a positive shock in demand would lead to the firm reallocating rival inputs

towards product j, thus increasing Sj
bt. This suggests relying on product-city-specific demand

shocks as a way to shift Sj
bt within a firm and thereby identify α.

Having recovered ln Ω̂j
bct from equation (13), parameters

(
λ, {Aj

bt

Ωbt
}(j,b,t), {τ̃ jbct}(j,b,c,t)

)
can

be identified from the following equation:

ln Ω̂j
bct = −λZj

bct + ln

(
Aj

bt

Ωbt

)
− τ̃ jbct, (14)

which can be estimated using OLS with fixed effects. Note that λ is identified from co-
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variation between observables Zj
bct (for example, distance from the production location to the

destination city) and location-product-city level productivity while keeping location-product

level productivity constant.

Step 2.

In order to create an equation that allows to estimate (ϕ, {Kbt}(b,t)), notice that we can

use equation (9) to write ln
(∑

j∈Jbt

∑
c∈Cj

bt
MCj

ctQ
j
ct

)
in the following way:

ln

∑
j∈Jbt

∑
c∈Cj

bt

MCj
ctQ

j
ct

 =
1

ϕ
lnQbt + lnKbt, (15)

where Kbt ≡ g(Wbt)

ϕΩ
1
ϕ
bt

and Qbt is the location-level output aggregator defined above.

Notice that once α is recovered in step 1, Qbt is known. Then, ϕ is identified from co-

variation in the total location-level output and location-level cost. Analogous to a single

product case, if there are increasing returns to scale an increase in total output will be

associated with a less-than-proportional increase in costs, while under constant or decreasing

returns the same output increase will generate an equal or more-than-proportional cost

increase. If the resulting ϕ is larger than α, that would imply that the location-level cost

increases slower with output than what we would expect based on the elasticity of private

inputs alone. This “wedge” is explained by the presence of public tasks in production,

implying economies of scope.

Identification of ϕ again requires instruments, since Qbt depends on Kbt. Similar to the

strategy for identifying α, it is possible to rely on demand shocks. However, in this case, an

ideal instrument needs to shift the overall output of a particular location. In order to create

such an instrument, we suggest aggregating demand shocks across all products and cities

served by location b.

5 Empirical Application: the MillerCoors Merger

Our empirical application focuses on the well-known joint venture between SABMiller

and Molson Coors within the U.S. brewing industry, approved in June of 2008. This setting

is well-suited for our analysis, as large brewing companies are typically multiproduct firms,

producing a diverse range of beer brands. Moreover, despite these firms operating multiple

brewing sites, the number of such locations is relatively limited. Ascher (2012) reports that

the U.S. brewing industry, initially characterized by thousands of local breweries, saw a

dramatic decline to approximately 22 traditional breweries by 2002. This trend suggests a
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significant increase in returns to scale and scope at the brewery level. Multiple sources agree

that the technological shift in the 1960s and 1970s induced these changes (Kerkvliet et al.,

1998; Ascher, 2012; Keithahn, 1978).8 The technological advancements include improvements

in the bottling/canning and packaging technology; the automation of brewing processes,

enabling large-scale operations with minimal labor; and innovations in the fermentation

process (see Keithahn (1978), p. 34-39 for more detail).9

The joint venture between Miller and Coors was approved despite increasing concentra-

tion in an already concentrated industry. Prior to the merger, the top five brands accounted

for about 80% of sales by 2001, with the merging parties being the second and third largest

in the industry (Miller and Weinberg, 2017).10 The merger received approval primarily due

to anticipated synergies in shipping costs, as Coors was going to be able to use Miller’s more

geographically diverse set of brewing facilities, thereby gaining closer access to various geo-

graphical markets (Ashenfelter et al., 2015). Our methodology enables an in-depth analysis

of the merger’s potential impact on prices and other market outcomes, considering not only

changes in concentration and shipping costs but also how economies of scale and scope might

be affected due to the reallocation of products across breweries.

5.1 Data

Our main data source is the IRI Marketing Dataset (see Bronnenberg et al., 2008 for a

detailed description), which provides price and sales data at the store–week–product level

for the years 2001 to 2012. A product is defined as a brand–size combination, and we focus

on three sizes: 6-pack equivalent, 12-pack equivalent, and 24/30-pack equivalent. We follow

the replication package of Miller and Weinberg (2017) to prepare the data for estimation

and restrict attention to January 2005 to May 2008, right before the Miller–Coors joint

venture was completed. We focus on this period to abstract away from the price effects of

the Miller–Coors joint venture (Miller and Weinberg, 2017; Miller et al., 2021). We refer the

reader to Miller and Weinberg (2017) for summary statistics.

We complement these data with the Public Use Microdata Sample (PUMS) of the Amer-

8Before that, scale and scope economies were present but moderate, originating mostly from general
brewery overhead and utilities. Keithahn (1978, p. 33) suggests that those included “the cost of wells, water-
processing equipment, sewage facilities, refrigeration equipment, management, laboratories, and custodial
costs”.

9Notice that some of these technologies might allow for both economies of scale and scope. For example,
brewing large quantities of the same type of beer or brewing multiple different types of beers in a large
brewery might result in the same labor savings compared to a smaller plant.

10Miller and Weinberg (2017) use the following five overarching brand categories: ABI, Miller, Coors,
Modelo, and Heineken. These brand categories each aggregate multiple smaller brands. For example, Coors
category includes brands such as Coors and Coors Light, among others.
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ican Community Survey. We use these data to incorporate demographic variables into the

demand system. For every geographic area in the IRI data, we use 500 draws of the distri-

bution of income per person. We use the same draws used by Miller and Weinberg (2017).

Lastly, we use data on the location of breweries and allocate each product sold in each geo-

graphic market in the IRI dataset to the nearest brewery as in Miller and Weinberg (2017).

To estimate transportation costs, we construct a measure of distance based on the interaction

of driving miles and diesel fuel prices (see Miller and Weinberg (2017) for details).

5.2 Empirical Model of Demand for Beer

The first step in our approach is estimating demand to derive both own- and cross-price

elasticities. These elasticities are then used within equation (2) to estimate marginal costs.

Our empirical model of demand for beer uses the random coefficients nested logit model

estimated in Miller and Weinberg (2017), which we briefly summarize here. The conditional

indirect utility that consumer m receives from purchasing product j ∈ Jct, where j indexes

a particular product in market (c, t) (a particular city c at time t) is given by:11

ujmct = δjct + µj
mct + ζ

g(j)
mct (ϱ) + (1− ϱ)ϵjmct, (16)

where δjmct is the mean utility of product j in market (c, t), µj
mct is the consumer-specific

deviation in the valuation of product j from its market-specific mean which depends on

product characteristics and consumer demographics, and ζ
g(j)
mct (ϱ)+(1−ϱ)ϵjmct is the remaining

consumer taste heterogeneity that is distributed extreme value. As in Miller and Weinberg

(2017), this structure of the unobserved consumer heterogeneity follows the assumptions of

a two-level nested logit model and allows substitution patterns within a group (or a nest)

to differ from substitution patterns across groups. The size of this difference is determined

by the nesting parameter 0 ≤ ϱ < 1. Since ζ
g(j)
mct (ϱ) is common to all products in group g,

and ϵjmct is i.i.d. extreme value, larger values of ϱ correspond to a stronger correlation in

preferences for products within the same group.12 As in Miller and Weinberg (2017), here

we use two groups g = 0, 1, where group 0 includes only the outside option j = 0 ∈ Υ0
ct (e.g.

buy no beer) and group 1 includes all the other products j ∈ Υct, which we denote by Υ1
ct.

The mean and consumer specific utilities δjct and µ
j
mct are parameterized as follows:

δjct = Xjβ + γP j
ct + σj + σt + ξjct (17)

11To help the reader keep track of indexes, we always report product-related index as superscripts, while
location/time/firm specific indexes are reported as subscripts.

12ζ
g(j)
mct (ϱ) follows a distribution, which depends on ϱ, that makes ζ

g(j)
mct (ϱ) + (1− ϱ)ϵjmict follow an extreme

value distribution.
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µj
mct = [P j

ct,X
j]ΠDm (18)

where Xj denotes observable product characteristics that in our analysis include calories and

a constant term, P j
ct is the price of product j in market (c, t), σj is a product specific intercept,

σt is a time period t specific intercept, and ξjct is the unobserved product quality. (γ, β) then

denote the average valuation of price and various product characteristics, respectively. Dm

denotes (demeaned) consumer income, and Π is a vector of parameters governing how (γ, β)

vary across consumers according to their demeaned income. The outside option payoff is

normalized to zero so that δ0ct + µ0
mct = 0.

Given these distributional assumptions, the market share of product j in market (c, t) is

given by sjct(Pct), where Pct is the vector of prices of all products in market (c, t), can be

written as:13

sjct(Pct) =
1

Nct

Nct∑
m=1

exp
(

δjct(P
j
ct)+µj

mct(P
j
ct)

1−ρ

)
exp

(
Igmct

1−ρ

) exp (Igmct)

exp (Imct)
(19)

whereNct is the number of consumers in market (c, t), Igmct = (1−ρ)
∑

j∈Ωg
ct
exp

(
δjct(P

j
ct)+µj

mct(P
j
ct)

1−ρ

)
is the inclusive value for groups g = 0, 1 according to consumer m in market (c, t), and

Imct = log (1 + exp(I1mct)) is the inclusive value for the entire market (c, t). Here, we write

δjict(P
j
ict) and µ

j
mict(P

j
ict) to emphasize that the consumer-specific payoffs to each good depend

are functions of each good’s price (through equations 17 and 18).

Since we rely on Miller and Weinberg (2017)’s demand model, we simply take their

estimates of (γ, β,Π) as given. Appendix D contains more information about the estimates

of the demand parameters we use. Given those estimates, we can construct δjct using the

information on sjct(Pct) and the standard Berry (1994) inversion. Then, assuming that firms

engage in Bertrand-Nash pricing, we can then recover an estimate of marginal cost by firm-

product-market using a standard marginal cost inversion as in equation (2).

5.3 Estimation of the Supply-Side Parameters

Having estimated the marginal costs, we can follow our approach described in Section

4 to estimate the parameters of the cost function. We can rewrite equation (13) in the

following way:

13Here, we assume the number of consumers is large enough so that we can “integrate out” ζ
g(j)
mct (ϱ)+ (1−

ϱ)ϵjmct.
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ln Q̂j
ct − ln Ŝ

c|j
bt = α ln Ŝj

bt + ln Ω̂j
bct, (20)

where ln V̂ ar = lnV ar− 1∑
j∈Jbt

|Cj
bt|

∑
j∈Jbt

∑
c∈Cj

bt
lnV arjbct. That is, we subtract the brewery-

level average from both sides of the equation. Notice that since lnQbt does not vary within

a brewery, it does not enter the transformed regression equation.

Having recovered the marginal costs, we can construct ln Ŝ
c|j
bt and ln Ŝj

bt. Notice that now

we have the data to estimate α from equation (20) using OLS. However, as discussed earlier,

the estimate would likely be biased since Ŝj
bt would generally be correlated with Ω̂j

bct, the

(demeaned) brewery-product-city-specific productivity shock. Notice that the bias may be

either positive or negative, depending on the correlation between Ŝj
bt, the equilibrium share

of rival inputs allocated towards product j in brewery b at time t, and all the characteristics

of the production process captured in Ω̂j
bct. In other words, firms may tend to allocate more

rival inputs to more or less productive processes, which would affect the direction of the bias.

Given the endogeneity of Ω̂j
bct, we use instrumental variables to estimate α. Specifically,

we use the demand shocks that affect the equilibrium quantity of product j sold in the city c

but are not correlated with the productivity term. As discussed earlier, given the estimated

discrete choice demand model, we can recover the mean utility of product j in market (c, t),

δjct, and obtain an estimate of the unobserved product appeal ξjct (see equation 17). We will

construct our instrument based on ξjct. The first issue that we need to resolve is that ξjct

may not be comparable across markets, as, given the way the demand model is estimated,

ξjct should, in fact, be interpreted as the difference in the product’s appeal for consumers on

the market (c, t) relative to that specific market’s outside option. As a result, if the outside

option differs by market, ξjct may not be properly comparable across markets. To deal with

this, we define ξjRct ≡ ξjct − ξrct as the difference in the product appeal relative to a reference

good r that is offered in all markets, which we take to be 6-packs of Bug Light.14 Secondly,

note that the estimate of ξjRct would reflect both the unobserved product quality as well as

the market (e.g., city×time) specific taste shocks. Since product quality may be correlated

with (quantity) productivity, we include product fixed effects to control for it.

OLS and IV results can be found in columns (1) and (2) of Table 1. After estimating α,

equation (20) also allows us to obtain the productivity shocks Ω̂j
bct, demeaned at the brewery-

month level. We can then proceed to estimate the relationship between productivity and

transportation cost using equation (14). Specifically, assuming that the productivity term

lnAj
bt is a sum of product and brewery-specific shocks, we estimate:

14Notice that since equation (20) uses demeaned variables, we also demean the demand shocks on the
brewery level.
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Table 1: Parameter Estimates

(1) (2) (3) (4) (5) (6) (7)
OLS IV OLS OLS OLS IV IV

α̂ 0.964*** 1.128***
(0.011) (0.014)

λ̂ 0.0001***
(0.000)

1

ϕ̂
0.806*** 0.781*** 0.802*** 0.781***

(0.014) (0.015) (0.017) (0.029)
First Stage F-stat - 3,198.76 - - - 3,176.48 347.39

ϕ̂ - - - 1.241 1.280 1.248 1.280
- - - (0.026) (0.045) (0.027) (0.049)

ϕ̂− α̂ - - - 0.112 0.152 0.119 0.151
- - - (0.024) (0.046) (0.024) (0.048)

Product FE Yes Yes - - - - -
Brewery-Time FE - - Yes - - - -
Product-Time FE - - Yes - - - -
Brewery FE - - - No Yes No Yes
N 89,910 89,910 89,910 902 902 902 902

Notes: Standard errors, clustered by brewery-month, in parentheses. P-value < .01 : ∗ ∗ ∗, P-value< .05 : ∗∗, P-value< .1 : ∗

ln Ω̂j
bct = −λZj

bct + lnAj
t + ln

(
Abt

Ωbt

)
− τ̃ jbct, (21)

where Zj
bct includes a constant and a geographic distance from brewery b to market c in-

teracted with fuel prices, lnAj
t and ln

(
Abt

Ωbt

)
are product-month and brewery-month fixed

effects, and τ̃ jbct is the error term. The estimate of λ is provided in column (3) of Table 1.

Similar to previous work (Miller and Weinberg, 2017; Ashenfelter et al., 2015), our analysis

shows a negative and significant relationship between distance and productivity (and there-

fore the marginal cost): increasing the distance measure by one standard deviation decreases

log-productivity ln Ω̂j
bct by 0.15 standard deviations.

Finally, having estimated α and the productivity shocks Ω̂j
bct, we can construct the mea-

sure of Qbt and use equation (15) to estimate ϕ. Again, OLS estimates may be biased since

the output aggregator Qbt is likely to be correlated with input prices Wbt, as well as the

average brewery productivity Ωbt. In order to correct for this bias, we construct instrumental

variables relying on brewery-level total taste shocks ξRbt = ln
(∑

j∈Jbt

∑
c∈Cj

bt
exp(ξjRct )

)
as our

instrument.15 To additionally control for the fact that there can be a systematic difference

15Note that we first exponentiate the taste shocks so that the sum of the demand shocks is in levels, and
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between large and small breweries in terms of productivity or input prices, we include the

brewery fixed effect.

Columns (4)-(7) of Table 1 report the OLS and IV estimates of 1
ϕ
. Both columns use the

IV estimate of α from column (2) of the same table to construct the aggregator Qbt.

At the bottom part of the table, we present point estimates and standard errors for ϕ̂

and ϕ̂− α̂. As in Grieco et al. (2018), we also find evidence of scale economies, although our

estimate (1.280) is slightly larger than their preferred average returns to scale estimates (1.17

- 1.20). To account for uncertainty in the first step of the estimation, the standard errors

associated with the estimates of ϕ̂ and ϕ̂ − α̂ are constructed using block bootstrap, where

we sample brewery-time observations with replacement and conduct 100 replications of the

two-step procedure for each bootstrap sample. Standard errors are based on the sample

standard deviation of the relevant statistic.

Notice that using our estimates and bootstrapped standard errors, we can construct a

t-statistic for whether ϕ̂ is strictly greater than α̂, and our estimates reject the null of no

economies of scope in the beer industry. Finally, equation (15) also allows us to obtain the

estimates of Kbt. Appendix E discusses how components of Kbt necessary for implementing

our counterfactuals are estimated.

5.4 The Impact of Scope Economies on Market Outcomes

How do scope economies impact market outcomes in the US beer industry? How relevant

are scope economies in explaining firms’ marginal costs? We address these questions by

comparing the observed equilibrium with a counterfactual equilibrium in which we shut

down economies of scope (i.e., no joint production occurs, but the production technology

otherwise stays the same). In this counterfactual scenario, α = ϕ, which, together with

equation (9), results in the following marginal cost of producing good j at brewery b for

market (c, t):

MCnon-joint,j
ct (Qbt,Abt,Wbt) = Kbt

∑
c∈Cj

bt

Qj
ct

Ω̂j
bct

 1
ϕ
−1

1

Ω̂j
bct

(22)

Lemma 2 in the Appendix shows that the marginal cost of production of a good is lower with

joint production when ϕ > α, which is what our estimates suggest for the US beer industry.

We quantify the impact of joint production on marginal costs in two steps. We first hold

quantities produced fixed and compute the counterfactual marginal costs using equation

then take the log of the this total demand shock proxy. We rely on this particular structure as it mimics the
structure of our output aggregator that we are instrumenting; see equation (12).
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Figure 1: Cost Change when Shutting Down Scope Economies at Observed Quantities
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Notes: An observation is a product–city combination. We restrict attention to one time pe-
riod: January 2005. The histogram displays the distribution of log(MCno scope economies) −
log(MCobserved), where MCobserved is the outcome in the observed equilibrium.

(22). We present the results in Figure 1, which shows cost changes (in log points) for each

product–market combination in our data when shutting down scope economies. The figure

shows that the marginal cost of production of a product in our sample increases by about

33.6 percent on average (at the observed quantities).

How do these cost increases impact pricing incentives? On the one hand, the increase in

the marginal cost of a product decreases the firm’s marginal incentives to sell the product,

which creates an incentive to increase the price of the good to lower the quantity sold. On the

other hand, the existence of increasing returns to scale (i.e., ϕ̂ > 1 in the US beer industry)

suggests the existence of a tradeoff: an increase in price decreases quantity, which further

increases the marginal cost of production. This makes a price increase costly for the firm.

To quantify how these pricing incentives play out in equilibrium, Table 2 compares the

counterfactual equilibrium in which scope economies are shut down with the observed equi-

librium. In the counterfactual equilibrium, firms fully adjust prices and production. To

compute the counterfactual prices, we replace the marginal cost of production of good j

with MCnon-joint,j
ibt (see equation (22)), and we solve the system of first-order conditions of

the pricing game in equation (7). Note that the marginal cost function is nonlinear in the

vector of quantities Qbt, implying that the solution to the system of first-order conditions

will depend on {Qbt}b. At equilibrium, the prices that solve the first-order conditions at the

vector of quantities {Qbt}b must be such that consumer demand at those prices imply quan-

tities {Qbt}b. Because of the computational burden of solving for the market equilibrium,

we consider all product–city combinations but we focus on one time period (May 2008).

Table 2 shows that shutting down scope economies causes prices to increase by 19.8

21



Table 2: The Impact of Scope Economies on Market Outcomes

(1) (2) (3) (4) (5) (6)
Price change (in log points) Cost change (in log points) Share change (in log points)

Overall 0.198 0.339 -0.022
(0.002) (0.003) (0.003)

Anheuser-Busch 0.201 0.403 -0.017
(0.003) (0.004) (0.004)

FEMSA 0.095 0.120 -0.012
(0.009) (0.009) (0.005)

Grupo Modelo 0.172 0.237 -0.004
(0.008) (0.005) (0.012)

Coors Molson 0.211 0.291 -0.015
(0.006) (0.007) (0.007)

Pabst 0.276 0.426 -0.060
(0.018) (0.015) (0.010)

SABMiller 0.194 0.285 -0.052
(0.005) (0.006) (0.004)

Observations 2,317 2,317 2,317 2,317 2,317 2,317

Notes: Standard errors in parentheses. An observation is a product–city combination. We restrict attention to one time period:
May 2008. Each column displays regression coefficients of log(Xcounterfactual) − log(Xobserved) on a constant (row Overall of
each panel) or firm-level indicators (all other rows), for X ∈ {price,marginal cost,market share}, and where Xobserved is the
outcome in the observed equilibrium. “Initial Quantities” indicates that the quantities in the observed equilibrium are used
for computing the marginal costs; “Equilibrium Quantities” indicates that the quantities in the counterfactual equilibrium are
used for computing the marginal costs.

percent on average. The effects are heterogeneous across firms—the larger price increases

are among the firms with the largest number of products (Anheuser-Busch, Coors Molson,

and SABMiller), which have the most to lose when shutting down scope economies. Pabst

also increases its prices significantly, as Pabst beer is brewed by SAB Miller, exposing it

to the loss of scope economies. Market shares on average decrease by 2.2 percent, which

makes production even less efficient, as firms miss out on scale economies. Shutting down

scope economies (including the interaction with scale economies) causes an increase in the

marginal cost of production of 33.9 percent on average—that is, the price increases magnify

the scope-induced cost increases because firms take less advantage of scale economies. As

with prices, Anheuser-Busch, Molson Coors, Pabst, and SABMiller are the firms with the

largest effects on their market shares and marginal costs of production.

Our estimates of economies of scope suggest that these have a first-order effect on market

outcomes. The results also show that scale and scope economies reinforce each other—when

both are present, they interact, making it cheaper for firms to sell each additional unit.

Our findings also show that scope economies and joint production have an economically

significant impact on productive efficiency, providing an (at least partial) explanation for

the existence of multiproduct firms in the US beer industry.
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Table 3: The Impact of the Coors-Miller Joint Venture on Market Outcomes

(1) (2) (3) (4) (5) (6)
log(price) log(marginal cost) log(market share)

Merged Non-merged Merged Non-merged Merged Non-merged
Scope -0.203 -0.195 -0.288 -0.362 0.033 0.017

(0.007) (0.010) (0.003) (0.003) (0.009) (0.008)

Merger 0.160 0.009 0.186 0.003 -0.020 0.007
(0.016) (0.007) (0.014) (0.001) (0.009) (0.002)

Merger × Distance savings -0.036 0.005 -0.070 -0.002 -0.007 -0.000
(0.007) (0.004) (0.009) (0.000) (0.005) (0.001)

Merger × New FEs -0.059 0.007 -0.106 0.004 0.005 -0.004
(0.019) (0.004) (0.024) (0.001) (0.008) (0.001)

Merger × Scope -0.043 -0.009 -0.074 -0.003 0.004 0.001
(0.008) (0.008) (0.002) (0.001) (0.006) (0.002)

Observations 7260 15910 . 7260 15910 . 7260 15910
R2 0.817 0.871 . 0.838 0.938 . 0.658 0.668
Sum of merger coefficients 0.022 0.013 -0.065 0.003 -0.018 0.004

(0.025) (0.005) (0.036) (0.001) (0.010) (0.002)

Note: Standard errors clustered at the market level in parentheses. An observation is a product–city pair for a particular
combination of the indicators merger, scope, distance savings, new FEs. We restrict attention to one time period: May 2008.
Merged firms correspond to SABMiller and Coors Molson. Non-merged firms correspond to all other firms. The last two rows
report the sum of all the merger coefficients as well as its standard error (in parentheses).

5.5 Scope and Scale Economies in Merger Analysis

A potential efficiency gain of the Coors-Miller joint venture was that Coors and Miller

products would have to travel shorter distances to reach consumers, as each merging firm

could leverage the network of breweries of the other merging firm (Ashenfelter et al., 2015).

However, when scale and scope economies are present, there is a tradeoff between consol-

idating production and saving on shipping costs. That is, fragmenting production over a

larger number of breweries may lessen a different type of efficiency caused by consolidating

production: scope and scale economies. The Coors-Miller joint venture thus creates tension

between these two forces: scope and scale economies versus shipping cost savings.

How did the joint venture impact market outcomes? What is the role of scope and scale

economies in explaining these results? To address these questions, we evaluate the effect of

the merger on costs, prices, and market shares. We then proceed to disaggregate this effect

into components associated with distinct features of the estimated supply model. Firstly, we

consider the effect of reallocating production to geographically closer breweries, which may

lead to transportation cost savings. Secondly, we take into account the impact of brewing
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operations being reallocated to more or less productive locations (e.g., locations with higher

or lower K̃bt ≡ g(Wbt)/(ϕA
1
ϕ

bt), which reflects variation in productivity and input prices across

breweries and comprises the major component of Kbt). Thirdly, we assess the influence of

scope economies, taking into account that some locations may start brewing larger quantities

of a larger variety of products while others may lose products. Lastly, we evaluate the effects

stemming from the changing scale of production associated with its fragmentation due to

breweries serving fewer markets after the merger.

In order to disaggregate the effect of the joint venture, we compare the observed pre-

merger market outcomes with a variety of scenarios. Specifically, we run the following

counterfactual experiments: pre-merger environment absent scope economies, as well as

post-merger environment with and without (i) scope economies, (ii) changes in distances,

and (iii) changes in brewery-level productivities (fixed effects). In counterfactual scenarios

without scope economies, we use equation (22) to calculate marginal costs. In experiments

concerning distances, we assume either that products get assigned new (shorter) distances

or that they have to travel the same distances as before the merger. Similarly, for coun-

terfactual experiments concerning brewery fixed effects, we assume either that products get

reassigned values of K̃bt associated with their new breweries or that they retain the values

of K̃bt associated with their old pre-merger breweries. See Appendix E for more details.

In total, given all the different combinations of post-merger scenarios, we conducted nine

counterfactual experiments. Together with the original pre-merger scenario, this provides us

with ten distinct environments for comparative analysis.

After calculating equilibrium market outcomes in each scenario, we use this data together

with a simple fixed effects regression in order to decompose the effects. Specifically, we

estimate the following equation:

MOj
ct = a+ bs1(Scope) + bm1(Merger) + bmd1(Merger)× 1(New Distances)+

+bmf1(Merger)× 1(New Brewery FEs) + bms1(Merger)× 1(Scope) + ψct + ψj + ejct
(23)

where MOj
ct is the market outcome (marginal cost, price, or market share), and indicator

variables are equal to one for observations associated with counterfactual experiments where

this specific characteristic is turned on. For example, 1(Merger) equals one for all the post-

merger counterfactuals. ψct and ψj are market and product fixed effects, respectively.

Table 3 presents coefficients associated with the indicator variables in equation (23).

As previously discussed, the impact of scope economies on market outcomes is substantial.

Columns (3) and (4) suggest they lower the cost of merging parties by 28.8% and the cost of

all the other firms by 36.2%. Moreover, scope economies contribute to lower costs and prices
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after the merger. The coefficients in front of the Merger × Scope interaction suggest an

additional decrease of 7.4% in costs and a 4.3% reduction in prices for merging firms when

scope economies are present. This effect can be attributed to a greater number of breweries

producing a more diverse range of products due to the reallocation of production as a result

of the merger. The reduction in shipping distances leads to similar effects. Moreover, the

merger results in a significant share of production being reallocated towards more efficient

breweries, which also contributes to lower costs and prices, as the coefficients associated with

the Merger × New FEs interaction suggests.

However, all these cost savings are greatly attenuated due to the fragmentation of pro-

duction and loss of scale at the brewery level. This is captured by the coefficient in front

of the Merger indicator in column (3). This variable captures the remaining components of

the merger’s impact on costs. These include the cost increase resulting from a significant

number of breweries of merged firms serving fewer markets post-merger (i.e., a decrease in

the scale of production) and the increase in cost due to merged parties pulling back pro-

duction in order to increase prices. In the end, the combined effect of the merger on costs

is negative: as Table 3 suggests, the costs of the merged companies, on average, decrease

by 6.5%. However, the average masks significant heterogeneity, which is even more evident

when it comes to the effect on prices.

A lesson from this analysis is that while production fragmentation may create savings in

shipping costs, it may create an inefficiency due to firms not fully benefiting from scope and

scale economies. This insight may be relevant for future merger evaluations.

6 Concluding Remarks

We propose a new method to estimate economies of scale and scope suitable for applied

work. Our method requires data commonly used for demand estimation (crucially, quantities

produced and prices for each product–market combination) but does not require input data,

making it easy to implement in other settings.

We apply our method to the US beer industry, which is an ideal setting to investigate

the existence of scale and scope economies, as it features multiproduct firms and production

that is consolidated in a small number of plants. Our estimates suggest the existence of both

scale and scope economies. We find that shutting down economies of scope (i.e., no joint

production takes place, but the production technology otherwise stays the same) would lead

to price and marginal cost increases of 19.8 percent and 33.9 percent on average, respectively,

decreasing market shares by 2.2 percent on average. Our findings suggest that scale and scope

economies have a first-order effect in explaining productive efficiency in the US beer industry.
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We also use our estimates to explore the implications of scale and scope economies for

merger analysis using the MillerCoors joint venture. The antitrust investigation of the joint

venture considered the tradeoff between two forces: the enhanced market power of Miller-

Coors and the transportation cost savings that would arise from the merged firm using a

more geographically diversified network of production plants. We show that additional ef-

fects are relevant to consider: i) the enhanced market power of the merged firm leads to a

decrease in the scale of production, which creates cost increases that at least partially offset

the transportation cost savings; ii) the merged firm’s plants gain scope economies as they

produce more varieties following the merger (i.e., Coors and Miller beers are produced in

all plants after the merger), which magnify the transportation cost savings caused by the

merger. We find that these effects are as large as the transportation cost savings caused by

the merger, making them key for understanding the competitive impact of the joint venture.
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Nevo, Aviv, “A Practitionerâs Guide to Estimation of Random Coefficients Logit Models

of Demand,” Journal of Economics & Management Strategy, 2000, 9, 513–548.

Orr, Scott, “Within-Firm Productivity Dispersion: Estimates and Implications,” Journal

of Political Economy, 2022, 130 (11), 2771–2828.

Panzar, John C and Robert D Willig, “Economies of scale and economies of scope in

multi-output production,” Bell Laboratories economic discussion paper, 1975, 33.

and , “Economies of scope,” The American Economic Review, 1981, 71 (2), 268–272.

Redding, Stephen J, “Trade and geography,” in “Handbook of International Economics,”

Vol. 5, Elsevier, 2022, pp. 147–217.

Rosse, James N., “Estimating cost function parameters without using cost data: Illus-

trated methodology,” Econometrica, 1970, pp. 256–275.

Shephard, Ronald William, Theory of cost and production functions, Princeton Univer-

sity Press, 1970.

Teece, David J, “Economies of scope and the scope of the enterprise,” Journal of economic

behavior & organization, 1980, 1 (3), 223–247.

Williamson, Oliver E, “Economies as an Antitrust Defense: The Welfare Tradeoffs,” The

American Economic Review, 1968, 58 (1), 18–36.

Zhang, Jingfang and Emir Malikov, “Off-balance sheet activities and scope economies

in US banking,” Journal of Banking & Finance, 2022, 141, 106534.

28



A Properties of the Cost Function

Proof of Lemma 1

Proof. When ϕ > α, it follows that

C(Yi,Ai,Wi) <
∑
j

C(Yj
i ,Ai,Wi) ⇔

∑
j

(
Y j
i

Aj
i

) 1
α

α

<

∑
j

(
Y j
i

Aj
i

) 1
ϕ

ϕ

,

which holds true given that ∑
j

(
Y j
i

Aj
i

) 1
x

x

is strictly increasing in x. A similar argument can be used to prove the other claims.

Statement and Proof of Lemma 2

Lemma 2 Consider a vector (Y 1
i , . . . , Y

J
i ) with Y j

i > 0. Then,

• the marginal cost of product j is lower under joint production (with a strict inequality

if Y k
i > 0 for some k ̸= j) when ϕ > α;

• the marginal cost of product j is grester under joint production (with a strict inequality

if Y k
i > 0 for some k ̸= j) when α > ϕ.

Proof. The marginal cost of production with joint and non-joint production is given by

MC joint,j
i =

1

ϕ
g(Wi)

∑
j

(
Y j
i

Aj
i

) 1
α


α
ϕ
−1(

Y j
i

Aj
i

) 1
α

1

Y j
i

,

MCnon-joint,j
i =

1

ϕ
g(Wi)

(
Y j
i

Aj
i

) 1
ϕ

1

Y j
i

,
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respectively, for (Y 1
i , . . . , Y

J
i ) ≥ 0. When ϕ > α, it follows that

MCnon-joint,j
i ≥MC joint,j

i ⇔(
Y j
i

Aj
i

) 1
ϕ

≥

∑
j

(
Y j
i

Aj
i

) 1
α


α
ϕ
−1(

Y j
i

Aj
i

) 1
α

⇔

1 ≥

(Y j
i

Aj
i

) 1
α


ϕ−α
ϕ

/

∑
j

(
Y j
i

Aj
i

) 1
α


ϕ−α
ϕ

,

where the inequality is strict if Y k
i > 0 for some k ̸= j. When ϕ < α, it is straightforward to

establish that the reverse inequality holds.

B A Model of Public and Private Tasks

In this Appendix, we derive the cost function (3) for the special case of Cobb-Douglas

production.16 To simplify notation, we suppress time subscripts and consider a single

firm/brewery, so that we can replace b(i) = i.

For each input X, there are two tasks- a private task r, and a public task p. A firm

allocates Xrj
i units of X to product line j doing the private task (e.g. construction), and Xp

i

units of X to the public task (supervising), which affects all product lines at once. Output

of product line j is determined by the following production function

Y j
i =

Aj
i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
(24)

Where C ≡
∏

X(βr
X)

βrX (βP
x )

β
p
X∏

X(βr
X+βp

X)
βr
X

+β
p
X
.

We assume that firms choose the allocation of inputs across tasks, given Xi to produce

the maximal quantities of output feasible; i.e. the firm always operates on their production

possibilities frontier. One way to characterize the solution to this problem is by solving

for a firm’s output distance function (Shephard 1970, Caves et al. 1982), which tells us the

minimum amount a firm must scale down a given output vector Yibt to make sure that

(Yibt

δ
,Xibt) ∈ Pibt, where Pibt is the firm’s production possibility set, and δ is the minimized

scaling factor. For this particular production problem, the firm’s output distance function

is given by:

16For more general specifications of the technology, see Cairncross et al. (2023).
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D (Yi,Xi,Ai) ≡ min
δ,Xi,{Xrj

i }j
δ

s.t.:
Y j

δ
≤ Aj

i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
∀j

Xp
i +

∑
j

Xrj
i ≤ Xi, ∀X

(25)

This optimization problem has the following Lagrangian

L = δ +
∑
j

λji

(
Y j
it

δ
− Aj

i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

))
+
∑
X

µX

(∑
j

Xrj
i +Xp

i −Xi

)
(26)

Since the production functions are increasing in all inputs, all constraints will bind with

equality, and therefore λji > 0 ∀j and µX > 0 ∀X, with:

Y j

δ
=
Aj

i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
∀j (27)

and

Xp
i +

∑
j

Xrj
i = Xi ∀X (28)

Taking the first order condition for Xrj
i yields

λjiβ
r
X

Aj
i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
Xrj

i

= λjiβ
r
X

Y j
i

δ

Xrj
i

= µX (29)

The first order condition for Xp
it satisfies

∑
j

λjiβ
p
X

Aj
i

C

(∏
X

(
Xrj

i

)βr
X (Xp

i )
βp
X

)
Xp

i

=
βp
X

δXp
i

∑
j

λjiY
j
i = µX (30)

Let Xr
i ≡

∑
j X

rj
i . Rearrange and sum (29) for all j, yielding:

µXX
r
i =

βr
X

δ

∑
j

λjiY
j
i (31)

Rearrange (30) and divide by (31)

Xp
i

Xr
i

=
βp
X

βr
X

(32)
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Since Xi = Xr
i +Xp

i , substitute (32) into this expression, yielding:

Xr
i +

βp
X

βr
X

Xr
i = Xi

or:

Xr
i =

βr
X

βr
X + βp

X

Xi (33)

and:

Xp
i =

βp
X

βr
X + βp

X

Xi (34)

Next, rearrange (29) and divide by (31), yielding:

Xrj
i =

λjiY
j
it∑

k λ
k
i Y

k
i

Xr
i (35)

Substitute into (33), (34) and (35) into (27), which yields :

Y j
i

δ
=
Aj

i

C

∏
X

(
λjiY

j
i∑

k λ
k
i Y

k
i

βr
X

βr
X + βp

X

Xi

)βr
X (

βp
X

βr
X + βp

X

Xi

)βp
X


Define α ≡

∑
X β

r
X , βX = βr

X + βp
X , and ϕ ≡

∑
X βX . Rearranging and cancelling out

terms in the above yields::

(
Y j
i

δAj
i

) 1
α

=
λjiY

j
i∑

k λ
k
i Y

k
i

(∏
X

(Xi)
βX

) 1
α

Sum over all j :

1

δ
1
α

∑
j

(
Y j
i

Aj
i

) 1
α

=

(∏
X

(Xi)
βX

) 1
α

Or:

δ =

(∑
j

(
Y j
i

Aj
i

) 1
α

)α

∏
X (Xi)

βX
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This establishes that the firm’s distance function is D (Yi,Xi,Ai) =

∑
j

(
Y
j
i

A
j
i

) 1
α
α

∏
X(Xi)

βX
.17

Assuming that a firm operates on its production possibility frontier (i.e., does not waste

any inputs when producing some desired output vector Yi) means that the firm will only

(Yi,Xi) satisfying Dit (Yit,Xit) = 1. This implies that(∑
j

(
Y j
i

Aj
i

) 1
α

)α

∏
X (Xi)

βX
= 1 (36)

To generate the relevant cost function, it is useful to rearrange (36) as follows:

Yi ≡

∑
j∈Bi

(
Y j
i

Aj
i

) 1
α

α

=
∏
X

(Xi)
βX (37)

Equation (37) provides a “psuedo” Cobb-Douglas production function for the output

aggregator Yi ≡
(∑

j

(
Y j
i

Aj
i

) 1
α

)α

. Under the further assumption that all inputs Xi are

obtained from perfectly competitive markets at prices WX
i , then it is well known that the

cost function for (37) is given by

C(Yi,Wi) = K

(∏
X

(
WX

i

) βX∑
βX

)
︸ ︷︷ ︸

≡g(Wi)

(Yi)
1
ϕ (38)

where K is a constant that depends on the various βX terms.

Substituting the definition of the output aggregator Yi ≡
(∑

j

(
Y j
i

Aj
i

) 1
α

)α

into (39) this

expression then yields:

C(Yi,Ai,Wi) = g(Wi)

∑
j

(
Y j
i

Aj
i

) 1
α


α
ϕ

(39)

Note that from this derivation of the firm’s cost function, we can see that α, which we

defined as α ≡
∑

X β
r
X , should be interpreted as the share of rival or private inputs in

production, while overall returns to scale, ϕ ≡
∑

X βX depends both private and public

tasks, so α ≤ ϕ.

17While we did not use the first order condition for δ, which implies δ2 =
∑

j λ
j
iY

j
i , we would use this

expression to solve for µX and λj
i
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C Sjbt is the share of rival inputs allocated to product j

Define Sj
bt ≡

∑
c∈Cj

bt

MCj
ctQ

j
ct∑

k∈Jbt

∑
c∈Ck

bt
MCk

ctQ
k
ct

as in the main text. In this appendix, we now show

that this share is equal to the share of inputs allocated to the rival task for good j, i.e.

Sj
bt =

Xrj
bt∑

k∈Jbt
Xrk

bt
=

Xrj
bt

Xr
bt

∀X.

The result can be obtained by noting that the relevant rival input shares were already

determined when we characterized a firm’s output distance function in Appendix B; specifi-

cally, equation (35) tells us that
Xrj

bt

Xr
bt

=
λj
btY

j
bt∑

k λk
i Y

k
bt
, where we now let i = (b, t). We can obtain

the desired result by showing that λjbtY
j
bt is proportional to

∑
c∈Cj

bt
MCj

ctQ
j
ct; this can be

done by applying the envelope theorem to a firm’s cost minimization problem, as well as the

output distance function problem.

First, note that a firm’s cost function can be recovered from the following cost minimiza-

tion problem:

C (Qbt,Abt,Wbt, τbt) ≡min
Xi

∑
X

WX
i Xi

s.t.: D(Qbt,Abt,Wbt, τbt) ≤ 1

(40)

where D(Qbt,Abt,Wbt, τbt) is the output distance function corresponding to the cost function

used in the main text.18

This problem has the following Lagrangian:

L =
∑
X

WX
bt Xbt + θbt(D(Qbt,Abt,Wbt, τbt)− 1)

From the envelope theorem, it follows that:

MCj
ct ≡

∂C(Qbt,Abt,Wbt, τbt)

∂Qj
ct

= θbt
∂D(Qbt,Abt,Wbt, τbt)

∂Qj
ct

(41)

From Appendix B, we know that the cost function used in the main text has an out-

put distance function defined by (40). Applying the envelope theorem to its associated

Lagrangian (equation 26) yields:

18Note that we have written the output distance function in terms of quantities sold in each market

c that are produced by brewery b, Qbt. Since D (Yb,Xb,Ab) =

∑
j

(
Y

j
b

A
j
b

) 1
α

α

∏
X(Xb)

βX
from Appendix B, this

becomes D (Qbt,Abt,Wbt, τbt) =

∑
j

(∑
c Q

j
ctτ

j
bct

A
j
i

) 1
α

α

∏
X(Xb)

βX
once we replace aggregate factory-level outputs with

market-specific sales through the iceberg transportation constraint (4).
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∂D(Qbt,Abt,Wbt, τbt)

∂Qj
ct

=
∂D(Qbt,Abt,Wbt, τbt)

∂Y j
bt

∂Y j
bt

∂Qj
ct

=
λjbt
δ
τ jbct = λjbtτ

j
bct (42)

where the third equality uses (4), and the fourth equality uses the fact that δ = 1 when firms

cost minimize.

Note that (41) and (42) together imply that:

MCj
ctQ

j
ct = θbt

∂D(Qbt,Abt,Wbt, τbt)

∂Qj
ct

Qj
ct = θbtτ

j
bctλ

j
btQ

j
ct (43)

Summing over all c ∈ Cj
bt then yields:∑

∈Cj
bt

MCj
ctQ

j
ct = θbtλ

j
bt

∑
∈Cj

bt

τ jbctQ
j
ct = θbtλ

j
btY

j
bt (44)

where the last equality follows from (4).

Substituting equation (44) into (35) then yields:

Xrj
bt

Xr
bt

=
λjbtY

j
bt∑

k∈Jbt λ
k
i Y

k
bt

=

∑
∈Cj

bt

MCj
ctQ

j
ct

θbt∑
k∈Jbt

∑
∈Ck

bt
MCk

ctQ
k
ct

θbt

=

∑
c∈Cj

bt
MCj

ctQ
j
ct∑

k∈Jbt

∑
c∈Ck

bt
MCk

ctQ
k
ct

= Sj
bt (45)
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D Estimates of Demand Parameters

We use the estimates of the demand parameters directly from Miller and Weinberg (2017).

Specifically, we use the estimates from their baseline RCNL-1 model (see Table IV in Miller

and Weinberg (2017)).

Variables Parameter Estimate

Price γ -0.0887

Nesting Parameter ϱ 0.8299

Demographic interactions
Income × Price Π1 0.0007

Income × Constant Π2 0.0143

Income × Calories Π3 0.0043
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E Decomposition of Kbt

Recall that Kbt = g(Wbt)/(ϕΩ
1
ϕ

bt). At the same time, Ωbt is, in fact, a location-level aver-

age of product-market pair productivity terms with lnΩbt =
1∑

j∈Jbt
|Cj

bt|

∑
j∈Jbt

∑
c∈Cj

bt
lnΩj

bct.

That should be taken into account when reallocating products across locations. In other

words, when reallocating product j from location b to location b′, Kb′t assigned to this prod-

uct and other products made in location b′ will change through the change in the average

productivity term.

To account for that, we follow the assumption that the productivity term lnAj
bt is a sum

of product and location-specific shocks (same assumption that we use in equation (21) when

estimating the relationship between productivity and transportation cost). Then we can

rewrite Ωj
bct ≡ Aj

bt/τ
j
bct in the following way:

lnΩj
bct = lnAj

t + lnAbt − ln τ jbct (46)

That allows us to rewrite the equation for Kbt in the following way:

lnKbt +

1

ϕ

1∑
j∈Jbt |C

j
bt|

∑
j∈Jbt

∑
c∈Cj

bt

(lnAj
t − ln τ jbct)

 = ln g(Wbt)− lnϕ− 1

ϕ
lnAbt︸ ︷︷ ︸

≡ln K̃bt

, (47)

where K̃bt captures the variation in productivity and input prices across production locations.

Notice that after estimating Kbt and ϕ using equation (15), and τ jbct and A
j
t using equation

(21), we can calculate K̃bt using the equation above.

When product l is reallocated from location b to location b′, we can recalculate the new

Kb′t associated with this product in the following way:

lnKb′t = ln K̃b′t −

1

ϕ

1∑
j∈Jb′t

|Cj
b′t|

∑
j∈Jb′t

∑
c∈Cj

b′t

(lnAj
t − ln τ jb′ct)

 , (48)

where Jb′t will include the product l and all other products made in location b′. In some

counterfactuals that we implement for the merger analysis, K̃bt is not changed to K̃b′t (coun-

terfactuals without changing the brewery-level productivities or fixed effects); in some coun-

terfactuals, the distance that product l has to travel is not changed, which will be affecting

the average distance component in Kb′t. However, in all the merger counterfactuals, the

production set for product l across which product-level productivities and transportation
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costs are averaged changes from Jbt to Jb′t.
Finally, notice that the transportation cost includes a location-product-market specific

unobserved component τ̃ jbct which incorporates all the other factors that affect the cost of

delivering product j from location b to market c. Since these factors are not included in our

model, we remove this component before calculating the counterfactuals. We also recalculate

the equilibrium of the original (pre-merger) environment without this component and use

these results when comparing the outcomes.
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