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Abstract

What can we learn from auction data when the seller submits shill bids to inflate the
auction price? I study identification in an incomplete model of an English auction with
shill bidding in the context of independent private values. I show that the distribution of
valuations is partially identified (as is the optimal reserve price), and I provide bounds
for the distribution of valuations that hold even when the seller is not engaging in shill
bidding. I apply these results to a sample of eBay auctions.
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1 Introduction

The use of online auctions exploded in the early days of Internet commerce Einav et al.,
2018. Online auction platforms have reduced matching frictions between buyers and sellers,
creating new trade opportunities, but these online marketplaces are far from frictionless. In a
survey by the UK’s Office of Fair Trading, online auction users reported that shill bidding—
i.e., when the seller bids in their own auction to inflate the price—was a common problem
on online auction platforms (OFT, 2007).1 A number of eBay users in the UK and US have
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been prosecuted for using fake identities to drive up auction sales prices, and the penny
auctions platform PennyBiddr was even shut down when the platform itself faced allegations
of shill bidding.2 Grether et al. (2015) present evidence suggestive of shill bidding on Copart
(an online car auctions platform), and a lawsuit alleges the use of shill bidding on platform
Auction.com (online real estate auctions).3

Why would a seller engage in shill bidding? There are a number of explanations. The first
one is that some online auction platforms charge sellers a fee for posting a reserve price (e.g.,
eBay), which is a fee that the seller can avoid if they use shill bids in lieu of a reserve price
(Kauffman and Wood, 2005). A second one is that platforms such as eBay have a “second
chance offer” feature, which allows a seller to allocate the object to the second highest bidder
in the event that the winner fails to pay. This feature of the platform substantially reduces
a seller’s cost of engaging in shill bidding, as the seller can allocate the good to the second
highest bidder in the event that the “winning bid” is a shill bid. A third explanation is
that sellers may face uncertainty about primitives that impact the optimal reserve price. For
example, a seller may face uncertainty about the exact composition of buyers (if bidders
are asymmetric) or the number of bidders that will participate in the auction. As the seller
observes the bidding process, the seller can learn about the composition of buyers or the
number of bidders and use shill bids to “adjust” the reserve price (Graham et al., 1990;
Wang et al., 2001; Andreyanov and Caoui, 2020).4

I study identification in an English auction (i.e., ascending price auction) with shill bidding
in the symmetric independent private values framework.5 Specifically, I investigate what an
econometrician can learn about the distribution of valuations and the optimal reserve price
when using auction data that may be contaminated with shill bidding. The auction model
is incomplete in that I make weak assumptions about the behavior of bidders and sellers. In
particular, I do not make assumptions about the bidding behavior of the seller.

2See, for example, “3 Men Are Charged With Fraud In 1,100 Art Auctions on EBay,” The New York
Times, March 9, 2001, “Phony Bids Pose Difficulties, Putting eBay on the Defensive,” The Wall Street
Journal, May 24, 2000, “Officials Accuse Three in Scam To Drive Up Prices in eBay Bids,” The Wall Street
Journal, February 8, 2002, and “How do you catch online auction cheats?,” BBC News, July 5, 2010. .

3See, e.g., “Lawsuit accuses Auction.com of using ‘shill bidder”’, New York Post, December 25, 2014.
4The optimal reserve price can vary with the number of bidders in a number of cases. With independent

private values, this may occur whenever the distribution of valuations F (v) is such that v− (1 −F (v))/F ′(v)
is not monotone increasing (see the discussion in Wang et al., 2001). With affiliated private values, the
valuations may depend on a common factor (e.g., market conditions), which may also affect the seller’s
valuation for the object (i.e., the value from a future sale if the object does not sell in the auction).

5See, for example, Hasker and Sickles (2010) for a survey of the use of eBay data in the economic literature.
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I find that the distribution of valuations is partially identified in the presence of shill
bidding. To see why, consider an auction with n+ 1 bidders, where n are legitimate bidders,
and one is a shill bidder. Assume no minimum bid increments and that the game ends
when only one bidder is left. Define the auction price as the lowest price at which only one
bidder remains active. The presence of a shill bidder implies that the auction price may
not necessarily be the second highest valuation among the n legitimate bidders. If the shill
bidder places the highest bid, then the auction price would be the highest valuation among
the n legitimate bidders, whereas if a legitimate bidder places the highest bid, then the
auction price is the greater between the shill bid and the second highest valuation among
the legitimate bidders. As a result, the auction price is bounded between the second and
first highest valuations among the n legitimate bidders. This inequality is the basis of the
identification region for the distribution of valuations when the econometrician only observes
the auction price. I then use these bounds to investigate what an econometrician can learn
about an auction’s optimal reserve price, taking the perspective of a seller who wishes to sell
an object without engaging in shill bidding.

I argue that even if there is no shill bidding in the data (i.e., all n + 1 bidders are
legitimate), the true distribution of valuations will still be contained in this identification
region, provided that the assumptions of the symmetric independent private values setting
hold. That is, the bounds that I derive hold regardless of shill bidding. I discuss how this
result can also be used to implement a specification test for a particular complete model in
which at least n out of n+1 bidders draw their values independently from some distribution.

Given the general concern about shill bidding in online auctions, the methods I develop
can be applied to settings as varied as eBay auctions, real estate auctions (Auction.com), or
car auctions (Copart). I apply these results to a sample of eBay auctions for 3.4-oz bottles
of Armani Acqua di Gio perfume (mint condition), which took place between the years 2008
and 2010. I estimate the identification regions for the distribution of valuations and optimal
reserve price and discuss the informativeness of these bounds in that particular context. I
also compare the estimates of the identification region of the distribution of valuations with
estimates of the distribution of valuations using methods that rule out shill bidding. Using
the specification test I propose, I find that the data provide weak support for rejecting the
“button auction” model (i.e., no minimum bid increments, no shill bidding, the potential
number of bidders equal to the observed number of bidders, the auction ends when there is
one bidder left) (Milgrom and Weber, 1982).

This paper contributes to the literature on identification in auctions. Athey and Haile
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(2002) study identification in standard auctions. Haile and Tamer (2003) present identi-
fication results in an English auction that deviates from the “button auction” abstraction
imposing weak conditions on bidder behavior. Song (2004) and Hickman et al. (2017) propose
methods to identify the distribution of valuations in online ascending-price auctions with a
potentially unknown number of bidders. Tang (2011) bounds the revenue distributions of an
auction under counterfactual formats. The results are derived without imposing paramet-
ric restrictions on the model structure, allowing for affiliated values and signals. In related
work, Coey et al. (2019) propose a test of independence of valuations and the number of
valuations in ascending button auctions with symmetric independent private values, which
can be used to bound counterfactual revenue distributions. Beyond the independent private
values framework, Aradillas-López et al. (2013) provide identification results for ascending
price auctions with correlated private values. More broadly, see Athey and Haile (2007) and
Hendricks and Porter (2007) for literature surveys.

Among these, Haile and Tamer (2003) is the closest to my work, as I draw from their
work specifying an incomplete English auction model. The key difference, however, is that
my identification results can handle the potential presence of an active seller. Beyond that, I
also provide partial identification results in the case in which the number of potential bidders
is unobserved.

This paper is also related to the literature on collusion in auctions, another type of auction
fraud. The empirical literature studying collusion in auctions has mostly focused on detection
and testing competitive versus collusive bidding rather than on the identification of objects of
interest when the data may be contaminated with fraudulent behavior (e.g., Feinstein et al.,
1985; Porter and Zona, 1993; Baldwin et al., 1997; Porter and Zona, 1999; Marmer et al.,
2016). Asker (2010) studies a bidding cartel and makes use of estimates of model primitives
to measure the impact of the cartel on auction outcomes. My contribution is in providing
identification results in the presence of fraudulent behavior rather than providing methods
to detect such behavior.

The paper is organized as follows. Section 2 discusses why a seller would want to use
shill bidding in the context of the independent private values framework. Section 3 presents
results on the identification of the distribution of valuations and discusses estimation. Section
4 presents extensions to the baseline framework. Section 5 investigates whether the optimal
reserve price can be identified from auction data with shill bidding. Section 6 presents the
empirical application using eBay auction data, and Section 7 concludes.
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2 Shill bidding in the independent private values frame-
work

Why may shill bidding arise in an auction in the context of the independent private values
framework? For at least two reasons: auction design and platform-specific features.

Consider a seller that values a good in v0 ≥ 0 and faces n bidders who draw their valuations
for the object independently from the distribution Fv with support [0, v̄] (with v0 ≤ v̄). The
seller uses an ascending price auction, where the winner pays the second highest bid (i.e., the
price at which the second to last bidder drops out of the auction).

Assume that bidders play the weakly-dominant strategy of bidding their valuation. The
optimal reserve price is then given by the solution to the problem of maximizing expected
revenue:

max
r∈[v,v̄]

v0Fv(r)n + n
∫ v̄

r

(
v − 1 − Fv(v)

F ′
v(v)

)
F ′

v(v)F n−1
v (v)dv (1)

(Riley and Samuelson, 1981). The first-order condition is given by

v0 = r − 1 − Fv(r)
F ′

v(r) . (2)

If the right-hand side of equation (2) is monotone increasing, then the first-order condition
has one solution and the optimal reserve price does not depend on the number of bidders
(Riley and Samuelson, 1981). In contrast, if the right-hand side of equation (2) is not
monotone, then the first-order condition may have multiple solutions, and the optimal reserve
price will generally depend on the number of bidders, n. Wang et al. (2001) provide an
example where the valuations distribute normal, Fv = 0.95 ·N(20, 202) + 0.05 ·N(120, 202),
and v0 = 20. In this example, equation (2) has multiple solutions, and the optimal reserve
price is 38 when n ≤ 11 and 98 if n > 12.

What does this imply for shill bidding behavior? If x−(1−Fv(x))/F ′
v(x) is not monotone

increasing, then the optimal reserve price will depend on n. If the seller does not know the
number of bidders that will participate in the auction (n) at the time of setting the reserve
price, the seller can set the reserve price at the lowest of the reserve price candidates and
then engage in shill bidding to “increase the reserve price” as a function of the actual number
of bidders that participate in the auction (i.e., if a different reserve price candidate is optimal
given n). That is, shill bidding may increase the expected revenue of the seller.

Shill bidding may also arise because of the features of the platform. eBay charges the
seller for setting a reserve price. Some sellers may prefer to avoid this payment and use shill
bids in lieu of a reserve price. eBay also has a “second chance offer” feature, which allows a
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seller to allocate the object to the second highest bidder if the auction winner fails to pay.
This feature of the platform incentivizes the seller to engage in shill bidding to “increase
competition,” as the seller can always allocate the good to the second highest bidder in the
event that the “winning bid” is the seller’s shill bid.

3 Identification of the distribution of valuations

Consider an English auction (open ascending-price auction) with n + 1 potential bidders,
where one of the bidders may be a shill bidder, while all other bidders are legitimate bidders.
The legitimate bidders have valuations for the object that are independently drawn from a
distribution Fv. The valuation and bid of bidder j are given by Vj and Bj, respectively. Let
Vk:n and Bk:n be the k-th highest valuation and bid in a sample of n bidders. Similarly, define
Fk:n as the distribution of the k-th highest valuation in a sample of n bidders.

The auction format is such that players may submit bids that increase the price of the
object by no less than the minimum bid increment of ∆ ≥ 0. Denote the auction price (i.e.,
the price at which the object is sold) in an auction with n+ 1 bidders by Wn+1 and assume
that the price rule is such that B2:n+1 ≤ Wn+1 ≤ B2:n+1 + ∆, where B2:n+1 is the second
highest bid.6 The distribution of auction prices in auctions with n + 1 bidders is given by
Fw,(n+1). In what follows, I use the terms auction price and winning bid interchangeably.

I follow Haile and Tamer (2003) and make the following two assumptions about bidder
behavior: 1) bidders do not bid more than they are willing to pay (i.e., Bj ≤ Vj, for every
player j); 2) bidders do not allow an opponent to win at a price they are willing to beat
(i.e., Vj ≤ W + ∆ for all runner-ups, where W is the auction price).7 All other aspects of
the model are left unspecified, including the behavior of the shill bidder. I assume that the
number of potential bidders equals the number of observed bidders (an assumption I relax
in the next section) and that the econometrician only observes the auction price and the
number of observed bidders.

The potential presence of a shill bidder in this incomplete model of an English auction
has two implications for identification. First, the econometrician does not know whether the
shill bidder or a legitimate bidder won the auction, and second, the econometrician does not
know whether one of the bidders is a shill bidder.

6These inequalities accommodate the case in which the top two bids differ by less than the minimum bid
increment. See Hickman et al. (2017) for a treatment of this case in the context of a complete model of
electronic auctions.

7Runner-ups are defined as all players except for the one with the highest bid.
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Let us consider an auction with n + 1 bidders. Using our assumptions about bidder
behavior, we can establish two facts. The first one is that the legitimate bidder with the
second highest valuation has a valuation that is less than the auction price plus the minimum
bid increment: V2:n ≤ Wn+1 + ∆. If the legitimate bidder with the second highest valuation
loses the auction, this inequality holds since otherwise the bidder would be violating the
assumption that bidders do not allow an opponent to win at a price they are willing to
beat. If the legitimate bidder with the second highest valuation wins the auction, it must be
because the bidder with the highest valuation is constrained by the minimum bid increment
and cannot beat the auction price (i.e., the top two valuations are within ∆ dollars of each
other): V1:n ≤ Wn+1 + ∆. This implies that V2:n ≤ Wn+1 + ∆ must hold, since V2:n ≤ V1:n.

The second fact that we can establish is that the legitimate bidder with the highest
valuation has a valuation greater than the auction price minus ∆: Wn+1 − ∆ ≤ V1:n. To see
this, note that if this bidder places one of the top two bids, then B2:n+1 ≤ V1:n (where the
inequality comes from the assumption that bidders never bid more than their valuation), and
since Wn+1 −∆ ≤ B2:n+1 by the price-rule assumption, the inequality holds regardless of who
wins the auction. The other case to consider is when the legitimate bidder with the highest
valuation places the third lowest bid, which can only happen when the valuations of the top
two legitimate bidders are within ∆ dollars of each other and the highest-valuation bidder is
constrained by the minimum bid increment.8 In this case, B2:n+1 ≤ Wn+1 ≤ B2:n+1 + ∆ (by
the price-rule assumption) and B2:n+1 ≤ V2:n (by the assumption that bidders do not bid more
than they are willing to pay), which combined imply that Wn+1 − ∆ ≤ B2:n+1 ≤ V2:n ≤ V1:n,
establishing the result.

Combining these inequalities, we have established that V2:n − ∆ ≤ Wn+1 ≤ V1:n + ∆.
That is, the winning bid in an auction with n legitimate bidders and one shill bidder (n+ 1
bidders in total) is bounded between the highest and second highest valuations among all n
legitimate bidders (up to a minor correction due to the minimum bid increment). These sets
of inequalities combined allow the econometrician to bound the distribution of valuations, as
indicated in the following proposition.9

Proposition 1. Consider the environment described above, and suppose that the econome-
trician observes the auction price wi and the total number of bidders ni + 1 ∈ Ω of every

8The same argument can be used if the legitimate bidders with the top k valuations all have valuations
within ∆ dollars of each other and the bidder with the highest valuation places a bid that is fourth highest
or lower.

9The proposition resembles theorems 1 and 2 in Haile and Tamer (2003) but must take into account that
the shill bidder may win the auction.
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auction i, where Ω is the set of unique values of n+1 that are observed by the econometrician.
Then, the identification region for Fv(t) is given by

H[Fv(t)] =
[

max
n+1∈Ω

ϕ−1
2 (Fw,n+1(t− ∆)|n), min

n+1∈Ω
ϕ−1

1 (Fw,n+1(t+ ∆)|n)
]

≡ [L(t), U(t)],

where Wi ∼ Fw,n+1(t) is auction price distribution when the total number of bidders is n+ 1,
and ϕ1(·|n) and ϕ2(·|n) are the distribution functions of the first- and second-order statistics,
defined as

ϕ1(x|n) = xn and ϕ2(x|n) = n(n− 1)
∫ x

0
un−2(1 − u)du.

Proof. From the discussion in the text, we know that V2:n − ∆ ≤ Wn+1 ≤ V1:n + ∆, which
imply that Fw,n+1(t−∆) ≤ F2:n(t) and F1:n(t) ≤ Fw,n+1(t+∆), where Fk:n is the distribution
of the k-th highest valuation in a sample of n bidders.

First, Let us consider the identification region’s lower bound when using data from auc-
tions with n+ 1 bidders. Applying the inverse of the second-order statistic operator to both
sides of Fw,n+1(t− ∆) ≤ F2:n(t), we obtain the lower bound

ϕ−1
2 (Fw,n+1(t− ∆)|n) ≤ Fv(t),

where we use that ϕk(Fv(t)|n) = Fk:n and that ϕk(·|n) is a strictly increasing function for all
1 ≤ k ≤ n.

Similarly, for the upper bound of the distribution of valuations, we apply the inverse of
the first-order statistic operator to F1:n(t) ≤ Fw,n+1(t+ ∆), to obtain

Fv(t) ≤ ϕ−1
1 (Fw,n+1(t+ ∆)|n).

Putting these two bounds together, we obtain

ϕ−1
2 (Fw,n+1(t− ∆)|n) ≤ Fv(t) ≤ ϕ−1

1 (Fw,n+1(t+ ∆)|n), ∀t, ∀n+ 1.

Intersecting these inequalities over all n+ 1 ∈ Ω yields the result. No additional information
is available to make the bounds tighter.

The bounds for the distribution of valuation in Proposition 1 hold regardless of the be-
havior of the shill bidder. In particular, the bounds hold if the shill bidder behaves as a
legitimate bidder (i.e., they draw a valuation from Fv and behave according to the bidder
behavior assumptions discussed above). That is, the bounds Proposition 1 hold whether or
not a shill bidder is active, making them informative about the distribution of evaluations in
any event.
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Corollary 1. Proposition 1 provides bounds for Fv that are robust to shill bidding.

Proposition 1 can also be used as the basis of a specification test. Proposition 1 implies
that any point estimate of the distribution of valuations derived from a complete model in
which the assumption of independent private values holds for at least n of the n+ 1 bidders
should lie within the identification bounds. One example of a complete model would be that
of a “button auction” with all n + 1 bidders drawing their valuations independently from
some distribution Fv (Milgrom and Weber, 1982). Under the null hypothesis of the “button
auction” model, one can estimate the distribution of valuations using standard methods, i.e.,
the winning bid equals the second highest valuation among all n+1 bidders (see, for example,
the identification results in Athey and Haile (2002)). The estimate F̂v should then lie within
the identification region for Fv; else, the data reject that complete model. Rejection can come
from bidder asymmetries (e.g., a shill bidder drawing “valuations” from a distribution that
is not Fv or asymmetric bidders more broadly) or the role of minimum bid increments. This
specification test does not rely on variation in the number of bidders, as does the specification
test in Athey and Haile (2002); the test relies on properties of order statistics, which is a
novelty, as the test can be applied even if all the auctions in the sample have the same number
of bidders.10

If the estimate F̂v fails to lie within the identification region for Fv, a formal test can be
implemented using the Cramer-von Mises criterion to test the null hypothesis that F̂v equals
the lower or upper bound of the distribution of valuations, depending on which bound F̂v

crosses (Anderson, 1962).

Corollary 2. A specification test for a complete model is given by checking whether

F̂v(t) ∈ Ĥ[Fv(t)]

holds for all t, where F̂v(t) is a point estimate of Fv(t) based on the assumptions of the
complete model and Ĥ[Fv(t)] is an estimate of the identification region given in Proposition
1.

Lastly, I discuss three of the assumptions that I have made so far. First, the analysis
assumes that all auctions are for identical goods. In practice, the set of auctions that are

10Another specification test that relies on properties of order statistics is proposed in Kim and Lee (2014),
which requires the econometrician to observe multiple bids. Their test is based on comparing estimates of the
distribution of valuations obtained using multiple pairs of order statistics. The test I propose is implementable
in settings where the econometrician has more limited data, as it requires observing the winning bid only.
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sampled may be for goods that differ in ways that are observable to the econometrician
through a vector of covariates Xi for each auction i. Proposition 1 continues to hold if the
econometrician conditions on a vector of covariates X, and all distribution functions are
replaced by conditional distribution functions.11

The second assumption is that the model allows for one source of bidder asymmetry:
the presence of a shill bidder.12 Brendstrup and Paarsch (2006) consider identification in an
English auction with asymmetric bidders in the context of the independent private values
framework. If the econometrician is able to classify bidders into a set of bidder types and ob-
serves the identity of the winner of each auction, then the authors show that the distributions
of valuations of all bidder types are non-parametrically identified in a complete model of an
English auction. Whether their ideas can be applied here to establish identification results
for the distribution of valuations, allowing for bidder asymmetries beyond the presence of a
shill bidder, is left for future research.

The third assumption is about bidding behavior, where I assume that bidders do not bid
more than their valuations or leave “money” on the table (i.e., let a rival buy the object at a
price they are willing to beat). If shill bidding takes place, it can induce a correlation between
the bidders’ bids and the seller’s shill bids (e.g., if a seller submits shill bids as a function
of the observed bids, and the bidders strategically respond to the seller’s behavior). This
could be problematic in a complete model that does not take into account these strategic
considerations. The framework I propose is an incomplete model in that I do not take a
stand on equilibrium strategies nor the behavior of the seller, and it can accommodate the
above-mentioned bid correlation to the extent that the (relatively mild) assumptions about
bidder behavior hold.

3.1 Estimation

Consider a sequence of T independent auctions. Each auction i has ni +1 bidders, where one
of the bidders in each auction may be a shill bidder drawing their “exit point” from some
arbitrary distribution. Let Ω be the set of all values of ni + 1.

The estimator for the distribution function of the winning bid among all n+1 bids (which
11Depending on the dimensionality of the vector of covariates X, the econometrician may prefer to specify a

single-index model so that the distribution of valuations only depend on the covariates through an index that
depends on X and some vector of parameters β (e.g., X ′β). See Paarsch and Hong (2006) for a discussion
on single-index models.

12Assuming, of course, that the shill bidder draws an exit point from a distribution that is not equal to
the legitimate bidders’ distribution of valuations.
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include legitimate bids and that of the shill bidder), Fw,n+1(t) for every n + 1 ∈ Ω, is given
by

F̂w,n+1,T (t) = 1
Tn+1

T∑
i=1

1{mi = n+ 1;wi ≤ t},

where Tn+1 = ∑T
i=1 1{mi = n+ 1} and mi and wi are the total number of bidders (including

a potential shill bidder) and the auction price of auction i.
Using these definitions, an estimator for the identification region of the distribution of

valuations is given by

ĤT [Fv(t)] =
[

max
n+1∈Ω

ϕ−1
2 (F̂w,n+1,T (t− ∆)|n), min

n+1∈Ω
ϕ−1

1 (F̂w,n+1,T (t+ ∆)|n)
]

≡ [L̂T (t), ÛT (t)].

The following proposition establishes the consistency of this estimator.

Proposition 2 (Consistency). Consider a sequence of T independent auctions. Each auction
i has ni +1 ∈ Ω bidders, with at least ni of them drawing their valuations independently from
Fv : [v, v̄] → [0, 1] and no more than one shill bidder drawing their “exit point” from some
arbitrary distribution with support [v, v̄]. Suppose that for each m ∈ Ω, Tm → ∞ as T → ∞.
Then, as T → ∞, L̂T (t) a.s.→ L(t) and ÛT (t) a.s.→ U(t) uniformly in t.

While these estimators are consistent, the estimators may be biased in small samples
because of the concavity (convexity) of the min (max) function, as discussed in Haile and
Tamer (2003). To see the problem, consider the estimate for the lower bound of the identifi-
cation region, which amounts to taking the point-wise maximum of a number of cumulative
distribution functions. In small samples, taking the maximum of these estimated cumulative
distribution functions will tend to select an estimate with upward estimation error, which
will lead to an upward bias of the lower bound. A similar problem arises for the upper bound
of the identification region but with a downward bias.

To alleviate the problem, Haile and Tamer (2003) replace the min (max) function in
their estimators with a smooth weighted average of the estimated cumulative distribution
functions that approximates the min (max). Specifically, they define the function

µ(ŷ1, · · · , ŷJ ; ρT ) =
J∑

j=1
ŷj

[
exp(ŷjρT )∑J

k=1 exp(ŷkρT )

]
(3)

for ρT ∈ R. When ρT → −∞, µ(ŷ1, · · · , ŷJ ; ρT ) converges to min(ŷ1, · · · , ŷJ). Likewise,
when ρT → ∞, µ(ŷ1, · · · , ŷJ ; ρT ) converges to max(ŷ1, · · · , ŷJ). For estimation, the authors
replace the min (max) functions with the function in equation (3), choosing values of ρT
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that decrease (increase) to minus infinity (infinity) at an appropriate rate as T → ∞ to
ensure consistency. Following Haile and Tamer (2003), I make use of these smooth weighted
averages in my empirical application to alleviate small sample bias.

3.2 Monte Carlo simulations

Consider a sequence of T=400,000 auctions, half of them with n = 5 legitimate bidders and
the other half with n = 4 legitimate bidders. The valuations of all legitimate bidders are
independent draws from a distribution Fv with support [0,1]. All auctions have one shill
bidder. That is, the total number of players in each auction i is ni + 1 ∈ {5, 6}. The
shill bidder bids independently up to a value S drawn from a distribution with cumulative
distribution function H(s) = s2 with s ∈ [0, 1]. Note that the identification results above
hold regardless of whether the shill bids are independent of the behavior of bidders—I make
the independence assumption here for simplicity. The minimum bid increment is ∆ = 0.

Figure 1 displays the true distribution of valuations as well as the identification region for
the distribution of valuations derived in Proposition 1 for four different samples. The figure
shows no systematic pattern of the distribution of valuations being closer to the upper or
lower bound of the identification region.

4 Extensions

4.1 Number of potential bidders is unobserved

In this section, I relax two of the assumptions in the analysis above, one at a time. I first
consider the case in which the econometrician observes the observed number of bidders, n+1,
but not the potential number of bidders, M + 1. In the previous section, I assumed M = n,
but it can be the case that some potential bidders do not get to place their bids if they enter
the auction at a time when the standing price exceeds their valuations. In this latter case,
n ≤ M . I assume that M + 1 ∈ {2, . . . , M̄ + 1}, where M̄ is known to the econometrician.

Consider an auction with n + 1 observed bidders, one of which may be a shill bidder.
From our analysis in the previous section, we know that

V2:m − ∆ ≤ Wn+1 ≤ V1:m + ∆,

where m+ 1 is the number of potential bidders, which is unobserved. That m is unobserved
implies that the econometrician must consider all feasible values of m for bounding the
distribution of valuations, i.e., M ≥ n.
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Figure 1: Monte Carlo simulations: Distribution of valuations and estimated identification
region using results in Proposition 1
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Using the same arguments than in Proposition 1, we can establish that

min
n≤m≤M̄

ϕ−1
2 (Fw,n+1(t− ∆)|m) ≤ Fv(t) ≤ max

n≤m≤M̄
ϕ−1

1 (Fw,n+1(t+ ∆)|m), (4)

for every n+ 1, where the minimum and maximum operators are used to take the union over
all possible events (i.e., values of m). In Lemma 1 in Appendix B, I show that ϕ−1

1 (x|n) and
ϕ−1

2 (x|n) are increasing in n for x ∈ (0, 1). Hence, the identification region simplifies to

ϕ−1
2 (Fw,n+1(t− ∆)|n) ≤ Fv(t) ≤ ϕ−1

1 (Fw,n+1(t+ ∆)|M̄),

for every n + 1. The identification region for Fv(t) is thus given by the intersection of the
above inequalities over all n+ 1 ∈ Ω:

max
n+1∈Ω

ϕ−1
2 (Fw,n+1(t− ∆)|n) ≤ Fv(t) ≤ min

n+1∈Ω
ϕ−1

1 (Fw,n+1(t+ ∆)|M̄). (5)

Note that when M̄ is large, the upper bound of the identification region can become unin-
formative, as ϕ−1

1 (x|n) = x1/n approaches 1 for large n.
A less conservative approach is to form bounds for Fv that hold in expectation (where the

expectation is with respect to M +1), which is feasible when the econometrician knows (or is
able to estimate) the joint distribution of potential and observed bidders: Pr(M + 1, n+ 1).
Note that in equation (4), the econometrician must take the union over all possible values
of M , as M is unobserved. In this other approach, the econometrician instead uses Pr(M +
1, n + 1) to take the expected value over all lower and upper bounds of Fv. The tradeoff is
that the bounds only hold in expectation (rather than with certainty, as in equation (5)),
but the bounds are tighter.

Consider the set of auctions with n + 1 observed bidders. The econometrician makes
use of the bounds that hold for every value of M + 1, ϕ−1

2 (Fw,n+1(t − ∆)|m) ≤ Fv(t) ≤
ϕ−1

1 (Fw,n+1(t+∆)|m), and the conditional probabilities, Pr(M+1|n+1), to form the following
bounds that hold in expectation:
∑
m

Pr(m+ 1|n+ 1)ϕ−1
2 (Fw,n+1(t− ∆)|m)︸ ︷︷ ︸

≡Ln+1(t)

≤ Fv(t) ≤
∑
m

Pr(m+ 1|n+ 1)ϕ−1
1 (Fw,n+1(t+ ∆)|m)︸ ︷︷ ︸

≡Un+1(t)

.

Lastly, the econometrician can use the marginal probabilities, Pr(n + 1), to combine the
inequalities for every observed value of n+ 1:

∑
n

Pr(n+ 1)Ln+1(t) ≤ Fv(t) ≤
∑

n

Pr(n+ 1)Un+1(t). (6)
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An intermediate approach is to use a probability threshold based on the distribution
Pr(M + 1, n + 1) to restrict the set of values of M to be considered by the econometrician.
Specifically, define the value Mτ,n+1 such that Pr(Mτ,n+1|n+1) = τ for auctions with N+1 =
n + 1 observed bidders and some critical value τ (e.g., τ = 0.9). Instead of using M̄ in the
upper bound of equation (5), the econometrician can use Mτ,n+1:

max
n+1∈Ω

ϕ−1
2 (Fw,n+1(t− ∆)|n) ≤ Fv(t) ≤ min

n+1∈Ω
ϕ−1

1 (Fw,n+1(t+ ∆)|Mτ,n+1 − 1). (7)

The benefit of this approach is that it produces a more informative upper bound but at the
cost of being less conservative.

Proposition 3. Consider the environment described above, and suppose that the econome-
trician observes the auction price wi, the total number of observed bidders ni + 1 of every
auction i, and the maximum number of potential bidders in each auction, M̄ .

a) The identification region for Fv(t) is given by equation (5).

b) Assume further that the econometrician knows the joint distribution of potential and
observed bidders: Pr(M + 1, n + 1). The bounds for Fv(t) in equation (6) hold in
expectation.

The same techniques discussed above apply to the estimation of the bounds in Proposition
3, although the bounds in equation (6) require knowledge of Pr(M + 1, n + 1). Hickman
et al. (2017) present non-parametric identification results and an estimation method for
Pr(M + 1, n + 1) requiring data on the observed number of bidders only (i.e., knowledge of
Fv is not required). Their model assumes that the number of potential bidders is unobserved
by each bidder and is exogenous from the bidders’ perspective. Bidders choose their bids
before the auction starts, and they submit their bids based on a predetermined order chosen
by Nature. If the standing auction price exceeds a bidder’s bid when it is their turn, then
their bid is not recorded, which gives rise to the discrepancy between the number of potential
bidders and the number of observed bidders. As long as equilibrium bidding is monotonic,
their method can be implemented without knowledge of Fv (i.e., monotonicity allows the
authors work with quantile ranks instead). See Hickman et al. (2017) for details.

4.2 More than one shill bidder

I next consider the case in which two shill bidders are active in an auction with n+1 bidders.
I assume that the econometrician observes the third highest bid in the auction, B3:n+1, as
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well as the auction price, Wn+1. Denote the distribution of B3:n+1 in auctions with n + 1
bidders by FB3,n+1.

To derive the bounds of the identification region for Fv(t), I establish two facts. The first
one is that V2:n−1 ≤ Wn+1 + ∆, which is similar to the observation used for Proposition 1,
and can be proven using the same argument.

The second fact is that B3:n+1 ≤ V1:n−1. That this always holds follows from the fact that
there are only two shill bidders, implying that the highest bid by a legitimate bidder is at
least B3:n+1 (i.e., the third highest overall). By the assumption that bidders do not bid more
than they are willing to pay, we know that B3:n+1 ≤ Vj for the legitimate player placing the
highest bid. Since Vj ≤ V1:n−1 for all player j, B3:n+1 ≤ V1:n−1 always holds.

Combining these inequalities, we have established that V2:n−1 − ∆ ≤ Wn+1 and B3:n+1 ≤
V1:n−1. The key difference with the case with only one shill bidder is that the highest valuation
among legitimate bidders cannot be bounded from below using the auction price, as it is
always possible that the two shill bidders place the top two bids. These sets of inequalities
combined allow the econometrician to bound the distribution of valuations, as indicated in
the following proposition.

Proposition 4. Consider the environment described above, and suppose that the econome-
trician observes the auction price wi, the third highest bid b3:n+1, and the total number of
bidders ni + 1 ∈ Ω of every auction i, where Ω is the set of unique values of n + 1 that are
observed by the econometrician. Then, the identification region for Fv(t) is given by

H[Fv(t)] =
[

max
n+1∈Ω

ϕ−1
2 (Fw,n+1(t− ∆)|n− 1), min

n+1∈Ω
ϕ−1

3 (FB3,n+1(t)|n− 1)
]
,

where Wi ∼ Fw,n+1(t), and B3:n+1 ∼ FB3,n+1(t) are auction price and third-highest bid distri-
butions when the total number of bidders is n+1, and ϕ1(·|n) and ϕ3(·|n) are the distribution
functions of the first- and third-order statistics, defined as

ϕk(s|n) = n!
(n− k)!(k − 1)!

∫ s

0
xn−k(1 − x)k−1dx.

Note that the same analysis can be conducted for more than two shill bidders, with the
data requirements increasing with the number of shill bidders (i.e., the econometrician is
required to observe more bids). Lastly, the same techniques discussed above apply for the
estimation of the bounds in Proposition 4.
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5 Identification of the optimal (fixed) reserve price

Consider a seller who wishes to sell an object in an auction with a fixed reserve price. That
is, the seller does not wish to engage in shill bidding, which is common knowledge among
bidders. The seller can access auction data and wishes to compute the optimal reserve price
based on these data. Given concerns about shill bidding in the auctions in the sample, the
seller uses the identification results discussed above.

What can be learned about the optimal reserve price? To answer this question, I assume
that the seller can set the minimum bid increment to zero, ∆ = 0, and I make the following
regularity assumption.

Assumption 1. The distribution of valuations, Fv, is continuously differentiable, and its
support is a compact interval, [v, v̄].

Under these assumptions, the existence of an optimal reserve price is guaranteed for a
number of bidders n. The optimal reserve price is given by the solution to the problem of
maximizing expected revenue:

max
r∈[v,v̄]

πn(r|v0) = max
r∈[v,v̄]

v0Fv(r)n + n
∫ v̄

r
(Fv(v) + vF ′

v(v) − 1)F n−1
v (v)dv,

where v0 is the seller’s valuation for the object (assumed exogenous). I do not assume that Fv

has the property that x−(1−Fv(x))/F ′
v(x) is monotone increasing, which may lead to multiple

solutions to the first-order condition of the problem above, with the optimal reserve price
depending on the number of bidders (see Section 2). Although my identification analysis here
resembles Haile and Tamer (2003) (Theorem 4), it differs in that I do not make assumptions
about the shape of Fv (i.e., that x− (1 − Fv(x))/F ′

v(x) is monotone increasing).
I assume that the shill bidder’s distribution of “exit points” is continuously differentiable.

These assumptions together imply that the upper and lower bounds of H[Fv(·)] form contin-
uously differentiable distribution functions.

Assumption 2. The shill bidder’s distribution of “exit points” is continuously differentiable.

5.1 Identification

Define the following bounds for the seller’s expected revenue when the seller values the object
at v0 and faces n bidders,

πU
n (r|v0) = v0L(r)n + n

∫ v̄

r
(L(v) + vL′(v) − 1)Ln−1(v)dv (8)
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and
πL

n (r|v0) = v0U(r)n + n
∫ v̄

r
(U(v) + vU ′(v) − 1)Un−1(v)dv, (9)

where L(·) and U(·) are given by the lower and upper bounds, respectively, of H[Fv(·)].
Here, I restrict to reserve prices that lie above of the seller’s valuation for the object, and to
distributions G(·) ∈ H[Fv(·)] that are consistent with assumptions 1 and 2.

To see that πL
n (r|v0) and πU

n (r|v0) are in fact bounds for the seller’s expected revenue; one
can show that for r ∈ [v0, v̄],

πn(r|v0, F ) ≥ πn(r|v0, G)

if F (t) ≤ G(t), ∀t. Since L(t) ≤ G(t) ≤ U(t) for all t ∈ [v, v̄] and for every distribution
G(·) ∈ H[Fv(·)] that is consistent with assumptions 1 and 2, the result follows.

The argument behind the identification approach can be illustrated using Figure 2. The
dotted line in the figure is the constant function that takes the value given by

sup
r∈[v,v̄]

πL
n (r).

Since πL
n is a lower bound for the true expected revenue function, πn, we know that the true

optimal reserve price(s), r∗, must satisfy

πn(r∗) ≥ sup
r∈[v,v̄]

πL
n (r).

At the same time, it must be that

πn(r∗) ≤ πU
n (r∗),

since πU
n is an upper bound for πn. Note that the peak(s) of the function πn, that give(s) us

the optimal reserve price(s), can be achieved at any point r such that

sup
a∈[v,v̄]

πL
n (a) ≤ πU

n (r).

This set of points defines the identification region for the optimal reserve price when the
seller faces n bidders. When the seller faces uncertainty about the number of bidders that
they will face in the auction to be run, this set can be computed for each plausible value of
the number of bidders, and the identification region for the optimal reserve price will thus
be the union of these sets.

Proposition 5. Assume that Assumptions 1 and 2 hold. Given v0, L(·) and U(·) (defined
by the lower and upper bounds, respectively, of H[Fv(·)]), πU

n (·|v0) and πL
n (·|v0) (defined in

(8) and (9), respectively), the identification region of the optimal reserve price is given by

H[r∗] =
⋃

n∈ℵ

{
r ∈ [v0, v̄] : πU

n (r) ≥ sup
a∈[v,v̄]

πL
n (a)

}
,
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where ℵ is the set of possible number of bidders to be faced by the seller (potentially a single-
ton).

5.2 Estimation

Note that one can rewrite πj
n(r|v0), for j ∈ {L,U}, as

πj
n(r|v0) = v0F−j(r)n + n

∫ v̄

r
(F−j(v) + vF ′

−j(v) − 1)F n−1
−j (v)dv

= v̄ + (v0 − r)F−j(r)n −
∫ v̄

r
F n−1

−j (v)[n(1 − F−j(v)) + F−j(v)]dv,

where F−U(·) = L(·) and F−L(·) = U(·), i.e., the lower and upper bounds of the identification
region for Fv(t). This expression is convenient for estimation, as it saves the econometrician
from estimating F ′

−j(·).
Having estimates for the bounds of the identification region, L̂T (·) and ÛT (·), and given

v0, the econometrician can estimate πL
n (·|v0) and πU

n (·|v0) using:

π̂L
T,n(r|v0) = v̄ + (v0 − r)ÛT (r)n −

∫ v̄

r
Ûn−1

T (v)[n(1 − ÛT (v)) + ÛT (v)]dv,

π̂U
T,n(r|v0) = v̄ + (v0 − r)L̂T (r)n −

∫ v̄

r
L̂n−1

T (v)[n(1 − L̂T (v)) + L̂T (v)]dv,

which I prove are uniformly consistent (i.e., π̂j
T,n(r|v0) a.s.→ πj

n(r|v0) uniformly in r, for j ∈
{L,U}) in Lemma 3 in Appendix B.

In order to estimate the optimal reserve price, I define the following function,

Qn(t) = max
{

0, sup
a
πL

n (a) − πU
n (t)

}
, (10)

which is defined for a given value of the number of bidders, n. By the previous discussion, it
follows that the identification region for the optimal reserve price is given by

Ξn ≡ arg min
t∈[v,v̄]

Qn(t).

The sample analogue of Qn(t) can be defined as

Q̂n,T (t) = max
{

0, sup
a
π̂L

T,n(a) − π̂U
T,n(t)

}
, (11)

which in turn leads to the sample analogue of Ξn(t), which can be defined as

Ξ̂n,T ≡
{
t ∈ [v, v̄] : Qn,T (t) ≤ inf

s
Qn,T (s) + εT

}
,

where εT → 0 as T → ∞.
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In order to discuss the consistency of the estimator Ξn,T , a notion of distance between
two sets must be used. Consider two non-empty sets A,B ⊂ RK and define ρ(A,B) =
supa∈A infb∈B |a− b|. The Hausdorff distance between both sets is given by

dH(A,B) = max{ρ(A,B), ρ(B,A)}.

Proposition 6 (Consistency). Suppose the conditions in Proposition 2 hold. Let the set of
possible reserve prices be [v, v̄]. Let Qn(t) and Q̂n,T (t) be defined as in equations (10) and
(11), respectively. Let T → ∞, and εT

a.s.→ 0.

a) Then ρ(Ξ̂n,T ,Ξn) a.s.→ 0.

b) Let supt∈R |Q̂n,T (t) −Qn(t)|/εT
a.s.→ 0. Then ρ(Ξn, Ξ̂n,T ) a.s.→ 0.

5.3 Monte Carlo simulations

Following the examples in Section 3.2, I estimate the identification region for the optimal
reserve price in each case using the bounds for Fv(t). I consider the case in which the number
of bidders the seller expects to face is exactly equal to four, ℵ = {4}, and the seller’s valuation
for the object is v0 = 0.2. Figure 2 depicts π̂L

n=4,T (r) and π̂U
n=4,T (r) for each example. The

figure shows that the bounds on the optimal reserve are generally wide, providing limited
information.

5.4 Alternative methods for computing the optimal reserve price

A series of articles have investigated whether the optimal reserve price of an auction can be
identified without knowing the distribution of valuations using data on past auctions (Cesa-
Bianchi et al., 2014; Mohri and Medina, 2014; Austin et al., 2016; Rudolph et al., 2016;
Rhuggenaath et al., 2019; Coey et al., 2021).

Mohri and Medina (2014) and Coey et al. (2021) consider an ascending price auction in a
private values context, where bidders are assumed to bid their valuation (a weakly dominant
strategy). They use the insight that the seller’s expected payoff, as a function of reserve price
r, can be written as a function of the two highest order statistics:

π(r) = E[v0 · 1{V 1 < r} + r · 1{V 2 < r < V 1} + V 2 · 1{r < V 2}],

where V 1 and V 2 are the first and second highest valuations among the bidders of the
auction, the expectation is with respect to V 1 and V 2, and v0 is the seller’s valuation. If the
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Figure 2: Estimated identification region for the optimal reserve price
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econometrician observes V 1 and V 2 in their dataset, then π(r) can be estimated using the
sample analog of π(r), and the optimal reserve price r∗ = arg max π̂(r) can be computed.

In ascending price auctions where bidders enter at random times, a bidder may not submit
a bid if they see that the standing price (i.e., the second highest bid among those who have
submitted a bid) exceeds their valuation. Of course, the bidders with the first and second
highest valuations will submit a bid, regardless of their entry time, provided that there is no
shill bidder. This proves the usefulness of the method (again, provided that shill bidding is
not present), as the econometrician can observe the top two bids on platforms such as eBay.

Can this method be used if shill bidding is present in the past auctions dataset? If a
shill bidder places a bid that is higher than V 2, then the legitimate bidder with the second

21



Figure 3: Summary Statistics: Armani Acqua di Gio (3.4 oz) eBay auctions
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highest valuation will not submit a bid if they enter the auction after the shill bid has
been submitted. The econometrician will generally not have the necessary data to use this
approach for computing the optimal reserve price. Adapting their results to a setting with a
shill bidder is left for future research.

6 An application to eBay auctions

I apply my results to a sample of eBay auctions. The data include 2,103 auctions of sealed
containers (i.e., mint condition) of Armani Acqua di Gio perfume (3.4 oz), which took place
between the years 2008 and 2010. Given the broad claims about the problem of shill bidding
in online auctions, this is a suitable setting for an empirical investigation.

The auction is an ascending price auction with a minimum bid increment ∆ > 0 that
depends on the standing price (e.g., ∆ = $0.5 when the price stands between $5 and $24.99,
and ∆ = $1 when it stands between $25 and $99.99). The auction price, Wn+1, satisfies
B2:n+1 ≤ Wn+1 ≤ B2:n+1 + ∆, where B2:n+1 is the second highest bid. The auctions in the
sample do not feature the buy-it-now or reserve-price options that are available to sellers
on eBay. For more background information on eBay auctions, see, for example, Hasker and
Sickles (2010), Hickman et al. (2017), or Einav et al. (2018).

The independent private values assumption is also plausible in this context, as bidders can
acquire the object from other retailers at a fixed (posted) price, but bidders are heterogeneous
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in how costly (or beneficial) it is for them to shop at a traditional retailer and it is plausible
that these differences are independent across bidders.

With respect to the data, for each auction in the sample, I observe the number of observed
bidders (i.e., those who placed a bid) and the auction price (i.e., the price paid by the winner
of the auction). Figure 3A shows that the number of observed bidders ranges between 3 and
18 in these auctions, with an average of 7 bids per auction. Figure 3B shows the distribution of
auction prices, with prices for the object roughly ranging between $20 and $60 and averaging
$38.13. I use raw bids in the analysis because the object can be viewed as a commodity (mint
condition, sealed container).

In the empirical analysis, I apply my results considering i) the case in which the number
of potential bidders and the number of observed bidders are assumed equal and ii) the case
in which the number of potential bidders is assumed unobserved.

As discussed in Section 3, when the number of potential bidders is assumed unobserved, I
assume that this number ranges between 2 and M̄ + 1 = 100 bidders. To implement some of
my results, I estimate the joint distribution of potential and observed bidders P (M+1, n+1),
using the method proposed in Hickman et al. (2017). In their model, the marginal probability
distribution of potential bidders, M + 1, is given by a generalized Poisson with a probability
distribution function given by Pr(m+1;λ) = λ1(λ1+(m+1)λ2)m exp{−(λ1+(m+1)λ2)}/(m+
1)!, with λ1 > 0 and |λ2| < 1. The conditional distribution Pr(n + 1|M + 1) is simulated
using the procedure outlined in Section 3 (see Hickman et al., 2017 for more details). The
model parameters are estimated using a nonlinear least squares estimator that seeks to match
the empirical distribution of observed bidders with the one predicted by the model. Using
the code made available by Hickman et al. (2017), I estimate λ1 = 5.570 and λ2 = 0.889,
with 95-percent bootstrapped confidence intervals given by [5.220, 5.948] and [0.880, 0.897],
respectively.13

Bounds for the distribution of valuations Figure 4A displays the estimates for the
identification region for the distribution of valuations using the results in Proposition 1. I
assume that the number of potential bidders equals the number of observed bidders. Given
the sample size, I replace the estimator’s min (max) functions with the smooth weighted
averages proposed by Haile and Tamer (2003), as discussed in Section 2. Specifically, I set
ρT = −

√
sample size and ρT =

√
sample size for the lower and upper bounds, respectively.

The figure also reports 95-percent bootstrapped confidence intervals for the bounds of the
identification region. These confidence intervals are one-sided and were computed using 2,500

13The bootstrapped confidence intervals are based on 2,500 replicates.
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Figure 4: Identification region for distribution of valuations of Armani Acqua di Gio perfume
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Figure 5: Identification region for the optimal reserve price
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replicates.14

The figure shows that the identification region for the distribution of valuation implies a
median valuation between $29 and $35, which is slightly less than the average auction price
($38). The distance between the bounds and the confidence intervals is greatest for the values
$25 or less—as there are few auctions with auction prices in that range—and decreases for
greater values.

Figure 4B does the same for the case when the number of potential bidders is assumed un-
observed (see Proposition 3). I present two sets of bounds in this figure. The first one, labeled
H[Fv(t)], are constructed using the (relatively mild) assumption that M + 1 ∈ {2, . . . , 100},
as derived in equation (5). The second one, labeled “Bounds with M90,n+1”, assume that
M + 1 ≤ M90,n+1, where M90,n+1 is a threshold defined as Pr(M + 1 ≤ M90,n+1|n+ 1) = 0.9,
which relies on the estimates of Pr(M + 1, n + 1) (see equation (7)). The lower bounds are
the same in both cases.

Comparing figures, one can see that the bounds are naturally tighter when the econome-
trician has more information (or they assume they have more information). As discussed in
Section 3, because M̄ + 1 = 100, the upper bound of H[Fv(t)] in Figure 4B is relatively unin-
formative, and it gets only slightly better when using the assumption that M + 1 ≤ M90,n+1.

14Haile and Tamer (2003) discuss consistency of bootstrapped confidence intervals in a similar setting.
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Comparison with a method that rules out shill bidding I estimate the distribution
of valuations assuming no shill bidding. In particular, I use the “button auction” model with
∆ = 0, independent private valuations, no shill bidding, and that the observed bidders equal
the potential bidders. Under these assumptions, the auction price equals the second-highest
valuation among all bidders. I make use of the identification results in Athey and Haile (2002)
to estimate Fv under these assumptions. Following Athey and Haile (2007), I estimate the
distribution of valuations separately for each subsample of auctions with n + 1 bidders and
then compute an optimally weighted average of these estimators to minimize the variance of
the estimated distribution of valuations.

As discussed in Corollary 2, the bounds in Proposition 1 must hold for any complete
model in which at least n of the n + 1 bidders draw their valuations independently from
some distribution Fv. That is, the distribution of valuations that is estimated based on the
assumptions of the complete model should lie within the identification bounds. If this fails to
hold, there is evidence of model misspecification, which may, for example, be due to bidder
asymmetries or correlation in valuations.

The estimate of Fv is displayed in Figure 4A under the label “Naively Estimated Fv(t).”
As one can see in the figure, the estimated distribution of valuations lies within the bounds
(or confidence interval of the bounds) at almost every point. Hence, the data provides weak
support for rejecting the “button auction” model with no shill bidding.

Bounds for the optimal reserve price Figure 5 plots the bounds for the seller’s expected
revenue when the seller values the good at v0 = $20 and expects an auction with 4 bidders.
In panel A, the bounds are constructed based on the bounds of the distribution of valuations
in Figure 4A (i.e., M+1 = N+1), whereas, in panel B the bounds are based on the estimates
in Figure 4B when M + 1 ≤ M90,n+1. Using the results in Proposition 5, the identification
regions for the optimal reserve price are Ξ̂M=N

n=4 = [20, 44] and Ξ̂M<M90
n=4 = [20, 57] in panels A

and B, respectively. Since the distribution of valuations ranges between $20 and $60, these
bounds only provide some information in the case of panel A.

Bounds for the auction price Figure 6 plots the bounds for the expected auction price
as a function of the number of bidders based on i) the bounds of the distribution of valuations
in Figure 4A (i.e., M + 1 = n+ 1) and ii) the bounds in Figure 4B when M + 1 ≤ M90,n+1.
The figure also plots the expected price in the sample of auctions (i.e., raw means assuming
that the number of observed bidders equals the potential number of bidders). To compute the
expected auction price, I make use of the assumptions about bidder behavior, and simulate
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Figure 6: Bounding the gains of adding an extra bidder
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2,500 auctions for each m+ 1, and average the bounds on the auction price across auctions.
Using the bounds when M = n (i.e., the potential and observed number of bidders is the
same), the figure shows that the lower and upper bounds for the expected auction price
increase by $3 when moving from 3 to 4 bidders. The slope of the upper and lower bounds
is less for greater values of the number of potential bidders. Similarly, the upper bound in
an auction with 3 bidders is less than the lower bound in an auction with 12 bidders. These
facts combined illustrate the benefits of competition from the seller’s perspective.

7 Conclusion

This paper studies identification in an English auction with shill bidding in an independent
private values setting. I show that the distribution of valuations and the optimal reserve price
are partially identified when shill bids may be present in the data. Partial identification stems
from the fact that the winning bid no longer equals the second-highest valuation among the
legitimate buyers, as the shill bidder can win the auction. I show that the winning bid will be
bounded between the second and first highest valuations among the legitimate buyers when
a shill bidder is present (up to minor corrections for the minimum bid increment). This
observation can be used to bound the distribution of valuations and optimal reserve price.

I apply these results to a sample of eBay auctions for Armani Acqua di Gio perfume.
The estimates of the bounds are relatively precise and are informative about the moments
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of the distribution of valuations. Importantly, I compare the estimated bounds for the dis-
tribution of valuations with estimates of the valuations based on a complete model without
shill bidding. This comparison gives rise to a specification test. If the estimated distribution
of valuations using the complete model without shill bidding falls outside the identification
region for the distribution of valuations, then the data reject the complete model. In my
empirical application, there is weak support for rejecting the “button auction” model (i.e.,
no minimum bid increments, no shill bidding, the potential number of bidders equal to the
observed number of bidders, the auction ends when there is one bidder left (Milgrom and
Weber, 1982).

Given that shill bidding has been cited as a problem on multiple auction platforms,
these methods can be used to study settings as varied as eBay auctions, real estate auctions
(Auction.com), or car auctions (Copart).
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Appendix A: Omitted proofs

Proof of Proposition 2
We first have that by the Glivenko-Cantelli theorem,

F̂w,n+1,T (t) = 1
Tn+1

T∑
i=1

1{mi = n+ 1;wi ≤ t} a.s.→ Fw,n+1(t)

uniformly in t, for all n+ 1 ∈ Ω.
Consider L̂T (t). Since ϕ−1

2 : [0, 1] → [0, 1] is a uniformly continuous function for all n, it
follows from Lemma 2 that

ϕ−1
2 (F̂n+1,T (t− ∆)|n) a.s.→ ϕ−1

2 (Fn+1(t− ∆)|n)

uniformly in t, for all n + 1 ∈ Ω. Since the max function is continuous, it follows from the
continuous mapping theorem that

L̂T (t) a.s.→ L(t), ∀t.

Finally, that the convergence of LT (t) to L(t) is a.s. uniformly in t, follows from the following
inequality

sup
t

|L̂T (t) − L(t)| ≤
∑

n

sup
t

|ϕ−1
2 (F̂w,n+1,T (t− ∆)|n) − ϕ−1

2 (Fw,n+1(t− ∆)|n)|.

The rest of the proof follows by applying analogous arguments.

Proof of Proposition 3
The proof follows from the arguments provided in the text.

Proof of Proposition 4
The proof follows from arguments that are analogous to those in the proof of Proposition

1.

Proof of Proposition 5
Fix n ∈ ℵ. Define

πn(r|v0) = v0Fv(r)n + n
∫ v̄

r
(Fv(v) + vF ′

v(v) − 1)F n−1
v (v)dv,

where Fv(·) is the true but unobserved distribution of valuations, and take

r∗
n ∈ arg max

r
πn(r|v0).
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It is true that

πn(r∗
n) ≥ sup

a∈[v,v̄]
πL

n (a) (12)

πU
n (r∗

n) ≥ πn(r∗
n) (13)

since πU
n (t) ≥ πn(t) ≥ πL

n (t),∀t.
Suppose r∗

n /∈ H[r∗]. That implies, in particular, that r∗
n /∈

{
r : πU

n (r) ≥ supa∈[v,v̄] π
L
n (a)

}
.

If r∗
n /∈ {r : πU

n (r) ≥ πL
n (rL

n )}, then

sup
a∈[v,v̄]

πL
n (a) > πU

n (r∗
n).

But then by making use of (12) and (13), we reach the following contradiction

sup
a∈[v,v̄]

πL
n (a) > πU

n (r∗
n) ≥ sup

a∈[v,v̄]
πL

n (a).

Proof of Proposition 6
Part a) follows from Lemma 4 in Appendix A. Part b) follows from Proposition 5b in

Manski and Tamer (2002).

Appendix B: Additional results

Lemma 1. Let ϕ1(·|n) and ϕ2(·|n) be the distribution functions of the first- and second-order
statistics, defined as

ϕ1(x|n) = xn and ϕ2(x|n) = n(n− 1)
∫ x

0
un−2(1 − u)du.

The inverse functions ϕ−1
1 (x|n) and ϕ−2

1 (x|n) are increasing in n for x ∈ (0, 1).

Proof. I first show that ϕ−1
2 (x|n) ≤ ϕ−1

2 (x|n + 1) for x ∈ (0, 1]. Call the left-hand side
expression, yn, and the right-hand side expression, yn+1. From the expression for the second-
order distribution function, ϕ2(·|n), we note that yn and yn+1 are implicitly defined as

x = n(yn−1
n − yn

n) + yn
n,

x = nyn+1(yn−1
n+1 − yn

n+1) + yn
n+1.

By setting these expressions equal, and by using the fact that x ∈ [0, 1], we obtain the
following inequality

n(yn−1
n − yn

n) + yn
n = nyn+1(yn−1

n+1 − yn
n+1) + yn

n+1

≤ n(yn−1
n+1 − yn

n+1) + yn
n+1,
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where the inequality follows from yn+1 ∈ (0, 1]. The inequality can be rewritten as

ϕ2(yn|n) ≤ ϕ2(yn+1(t)|n).

Since ϕ2(·|n) is a strictly increasing function, the result follows.
Consider next ϕ−1

1 (x|n). By taking the derivative of ϕ−1
1 (x|n) = x1/n, one can show that

the function is increasing in n for x ∈ (0, 1).

Lemma 2. Take a sequence of functions {gT (ω, θ)}, gT : X → Y , that converges to g(θ) a.s.
uniformly in θ ∈ Θ, that is,

Pr
[

lim
T →∞

sup
θ∈Θ

|gn(θ) − g(θ)| = 0
]

= 1.

Take a uniformly continuous function ψ : Y → Y . Then {ψ(gT (ω, θ))} converges to ψ(g(θ))
a.s. uniformly in θ ∈ Θ.

Proof. Fix any ε > 0. By uniform continuity of ψ, ∃δ > 0 such that for any x, y ∈ X,
|x− y| < δ implies |ψ(x) − ψ(y)| < ε.

By convergence a.s. uniformly of gT ,

lim
T →∞

sup
θ∈Θ

|gT (θ) − g(θ)| = 0 a.e. ,

that is, ∃Tδ such that ∀m ≥ Tδ

sup
θ

|gm(θ) − g(θ)| < δ a.e. .

By uniform continuity of ψ, we conclude that ∀m ≥ Tδ

sup
θ

|ψ(gm(θ)) − ψ(g(θ))| < ε a.e. .

Since this holds for any ε > 0,

lim
T →∞

sup
θ∈Θ

|gT (θ) − g(θ)| = 0 a.e. ⇒ lim
T →∞

sup
θ∈Θ

|ψ(gT (θ)) − ψ(g(θ))| = 0 a.e. .

The result follows since

1 = Pr
[

lim
T →∞

sup
θ∈Θ

|gT (θ) − g(θ)| = 0
]

≤ Pr
[

lim
T →∞

sup
θ∈Θ

|ψ(gT (θ)) − ψ(g(θ))| = 0
]
.

Lemma 3. πT,n(r) a.s.→ πn(r) uniformly in r.

33



Proof. Note that

sup
r

|πT,n(r) − πn(r)| = sup
r

|(v0 − r)(FT (r)n − F (r)n)

−
∫ v̄

r

(
FT (v)n−1[n(1 − FT (v)) + FT (v)] − F (v)n−1[n(1 − F (v)) + F (v)]

)
dv

∣∣∣∣
≤ |K1| · sup

r
|FT (r)n − F (r)n|

+ sup
r

∣∣∣∣∫ v̄

r

(
FT (v)n−1[n(1 − FT (v)) + FT (v)] − F (v)n−1[n(1 − F (v)) + F (v)]

)
dv

∣∣∣∣
≤ |K1| · sup

r
|FT (r)n − F (r)n|

+|K2| · sup
v

∣∣∣FT (v)n−1[n(1 − FT (v)) + FT (v)] − F (v)n−1[n(1 − F (v)) + F (v)]
∣∣∣

= |K1| · sup
r

|ψ1(FT (r)) − ψ1(F (r))| + |K2| · sup
v

|ψ2(FT (r)) − ψ2(F (r))|,

where K1 and K2 are constants, and ψ1 : [0, 1] → [0, 1] and ψ2 : [0, 1] → [0, 1] are uniformly
continuous functions. Since FT (x) a.s.→ F (x) uniformly in x, the result follows from Lemma
2.

Lemma 4. QT (t) a.s.→ Q(t) uniformly in t.

Proof. Note that

sup
t

|Qn,T (t) −Qn(t)| = sup
t

∣∣∣∣1{sup
a
πL

T,n(a) − πU
T,n(t) > 0}(sup

a
πL

T,n(a) − πU
T,n(t))

−1{sup
a
πL

n (a) − πU
n (t) > 0}(sup

a
πL

n (a) − πU
n (t))

∣∣∣∣
≤ sup

t

∣∣∣∣(sup
a
πL

T,n(a) − πU
T,n(t)) − (sup

a
πL

n (a) − πU
n (t))

∣∣∣∣
≤

∣∣∣∣sup
a
πL

T,n(a) − sup
a
πL

n (a)
∣∣∣∣+ sup

t

∣∣∣πU
n (t) − πU

T,n(t)
∣∣∣

≤ sup
a

∣∣∣πL
T,n(a) − πL

n (a)
∣∣∣+ sup

t

∣∣∣πU
n (t) − πU

T,n(t)
∣∣∣ .

Since πT,n(r) a.s.→ πn(r) uniformly in r, the result follows from Lemma 2.
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