
Teamwork in Contests∗

Jorge Lemus† Guillermo Marshall‡

May 30, 2023

Abstract

We study self-organized teams in dynamic contests. We develop a structural model
to understand players’ incentives to form teams. Using online-contest data, we estimate
that the average fixed cost of team formation is 52 percent of the contest prize. The
expected benefit of teamwork is uncertain and depends on the competition status. We
find that higher competitive pressure increases the likelihood of team formation. Since
teams generally exhibit higher productivity than individual competitors, team forma-
tion changes both the composition of players and the distribution of productivity in
the competition. Understanding this productivity–competition tradeoff is an important
implication for contest-design.
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1 Introduction

Over the last decade, firms and government agencies have sponsored thousands of online con-
tests on various platforms. Many skilled players participate in these contests, and depending
on the contest’s rules, they can participate as solo players or as part of a self-organized team.
While teamwork can enhance productivity it can also reduce it. Moreover, finding team-
mates that result in a successful partnership is costly, which is why players might abstain
from teamwork. Crucially, in a dynamic contest, the benefits of teamwork change as the
contest unfolds.

Our contribution is to empirically investigate the impacts of self-organized teams on contests,
shedding light on dynamic incentives to form teams, and drawing implications for contest
design. Specifically, why do self-organized teams form in a dynamic contest? Does teamwork
enhance productivity? Should teamwork be allowed? We combine policy-evaluation tech-
niques with a novel structural model of team formation in dynamic contests to empirically
answer these questions.

We make four contributions. First, we show that teamwork can create performance gains al-
though not all teams result in successful partnerships. Second, we propose a structural model
of team formation where a player compares the uncertain benefit of teamwork (which dynam-
ically depends on the status of the competition) with the cost of team formation. Third, we
use our structural estimates to derive contest-design implications such as evaluating the value
of facilitating teamwork (e.g., reducing the cost of team formation). Lastly, we investigate
factors that motivate or hinder team formation, such as a contest’s competitive pressure, the
similarity of players, and the precision of information regarding players’ performance.

Our empirical setting is Kaggle (www.kaggle.com), the largest platform for hosting online
data-science competitions, where players create algorithms to predict the outcome of a ran-
dom variable conditional on a set of covariates.1 Our sample includes 149 featured Kaggle
competitions, which offer monetary prizes, last several months, and attract thousands of par-
ticipants who can make multiple submissions during the contest.2 Kaggle is an ideal setting
to causally estimate the effect of teamwork on players’ performance. First, we have detailed
information about the timing and performance of every submission in a competition, the
identity of the player making each submission, the timing of team formation, and the compo-

1For instance, the ride-sharing company Lyft is hosting a competition where participants need to predict
the movement of traffic agents around an autonomous vehicle.

2Featured competitions are “full-scale machine learning challenges which pose difficult, generally
commercially-purposed prediction problems.”
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sition of each team. These data allow us to reconstruct the public leaderboard—displaying
the performance of all players in real time—and the organization of players into teams at
every moment of time in each competition. Second, players must have made at least one sub-
mission prior to forming a team, and teams cannot be disbanded. This allows us to observe
the performance of each player before and after they form their team.

Our first contribution is to investigate whether teamwork causes performance gains for team
members in a contest. In other settings, evidence suggests that teamwork improves perfor-
mance (see, e.g., Jones, 2009). We contribute to this literature by studying the performance
of self-organized teams in dynamic contests. We identify the impact of teamwork on team
performance by exploiting the timing of team formation. Using a differences-in-differences
design, we compare the performance of players who form a team with those who work solo
(and never form a team) both before and after the team forms. The identification argument
is that the performance of the control solo players and the team members would have followed
the same trend had the team not formed. In the estimation, we resort to several methods to
deal with endogenous team formation, i.e., players self-select into teams because they expect
the benefits of teamwork to exceed the costs of forming a team. First, we use matching on
observables (e.g., performance of team members up until the team forms) to accommodate
the case in which team formation is a function of observables (e.g., the gains of forming
a team are explained by the performance of players), but as good as random among a set
of individuals with the same observables. Second, we implement a Heckman-style selection
model (Heckman, 1979) using an instrumental variable to accommodate the case in which
team formation responds to unobservables as well as observables.

We find a positive relationship between teamwork and performance using all of these methods.
Our baseline estimates imply that teamwork increases a player’s scores by an average of 0.04
to 0.1 standard deviations, which is roughly equivalent to the median score difference between
the winner of a competition and the player ranked in the 40th position. When estimating
dynamic effects, we find that, team members, prior to forming a team, perform no differently
than the comparison group (solo players). However, their performance significantly increases
shortly after the team formation, and these performance gains persist over time and have an
impact on final standings. Heterogeneity analysis, however, shows that not all teams realize
these performance gains.

We use a similar research design to study the impact of teamwork on the number of submis-
sions, and we find two results. First, in our data, 8.4 percent of teams “fail,” meaning that
they make no submissions after their team forms. This is another source of uncertainty for
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players, since they would not want to form a team that fails. Second, among the teams that
remain active (i.e., do not fail), teamwork does not change the team members’ average num-
ber of submissions. Thus, for teams that do not fail, the aggregate number of submissions
by all team members is, on average, equal before and after the team forms. This finding
indicates that teamwork on average increases the quality and not the quantity of submissions
for teams that remain active.

Armed with the finding that the impact of teamwork on team performance is uncertain, our
second contribution is to explore the players’ incentives to form a team during the competi-
tion. To this end, we build a structural model of team formation in dynamic contests, where
players get random opportunities to form teams. Consistent with our findings, we assume
that players working in teams are more likely to achieve high scores. This is the driving
force that pushes players to form teams. However, there are three factors that discourage
team formation: (1) players need to split the prize if they win; (2) a team can fail (i.e., the
team can be unproductive); and (3) forming a team is costly. We estimate the primitives of
the model, including the distribution of the team-formation cost, and find that the average
cost of forming a team across all contests in our data is 52 percent of the prize. While these
costs are heterogeneous across players, most players find it too costly to form a team, even
knowing that their performance will improve conditional on not failing.

Using the estimates of our structural model, our third contribution is to shed light on whether
a contest designer should facilitate teamwork by making team formation less costly. In prac-
tice, a contest designer could facilitate team formation by allowing players to communicate,
providing easy access other player’s profiles (e.g. history of achievements), or incorporating
online-collaboration tools. Any of these initiatives would likely reduce the cost of forming
teams which, theoretically, has an ambiguous effect on contest outcomes. On the one hand,
more teams will form if it is cheaper to do so, generating high-scoring submissions as team-
work improves performance relative to working solo. On the other hand, a fraction of teams
will fail, making some competitors unable to make submissions. To empirically compare
these countervailing forces, we simulate contests where we reduce the cost of team formation.
In the equilibria of these simulated contests, we find that the lower the cost of forming a
team, the more teams, the fewer submissions, and the higher the maximum score. In other
words, the benefit of facilitating teamwork outweighs the cost. As a corollary, forbidding
team formation is detrimental for a contest designer seeking to procure a submission with a
score as high as possible.

We also use our estimates of the structural model to investigate the impact of competitive
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pressure on team formation. We represent an increase of the competitive pressure that
players face in a contest by simulating longer contests. We find that longer contests increase
the number of teams by increasing the rate of team formation, i.e., the number of teams per
unit of time increases. Thus, anticipating long-lasting competition, players are motivated to
form teams. The mechanic effect of more opportunities to form a team in a longer contest
contribute to the result of more teams, but this is not fully driving the result as we find that
the rate of team formation per unit of time increases in longer contests. These results suggest
a greater impact of policies that facilitate teamwork in more competitive environments or in
longer contests.

Although teams perform better than solo players, they represent less than 8 percent of all
players in the contest (e.g., 92 percent are solo players). The small number of teams can
be attributed to a number of factors, such as matching frictions, moral hazard concerns,
asymmetric information, or credit allocation. In our setting, matching frictions could hinder
collaboration because players struggle to find a partner who speaks or writes code in the
same language, or has a compatible skill set. Asymmetric information about the type of
a potential partner—a player’s ability, commitment to work, or preference over approaches
for solving a problem—may prevent partnerships from forming. Any of these problems can
trigger the demise of a team (recall that in our data 8.4 percent of teams fail).

Finally, we present complementary evidence on factors that might hinder teamwork in con-
tests. First, we find evidence of assortative matching: teams are more likely to form among
similarly-ranked players. Forming a team with a “similar” player may alleviate asymmetric-
information concerns (ability) and also balance the “power dynamics” inside the team. We
observe similar assortative-matching patterns along the dimensions of performance in past
competitions and contributions to the community (e.g., code sharing and message posting
on public forums). Second, we exploit variation in the precision of the public leaderboard
across competitions to assess the role of incomplete information. We find that collaboration
occurs earlier in competitions providing more precise performance feedback. We interpret
this finding as indicative of rational use of the information content of signals: fewer signals
are needed to overcome information asymmetries when signals are more precise.

In summary, our results suggest that a contest designer should facilitate the formation of
self-organized teams in dynamic contests.3 First, a public leaderboard is vital since it allows
players to learn about the performance of prospective partners in the current competition.
Second, the leaderboard should be as informative as possible.4 Third, information about

3Blasco et al. (2013) shows that self-organized teams perform better than randomly-formed teams.
4The contest designer needs to consider overfitting concerns with a perfectly informative leaderboard.
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past performance should be as informative as possible.5 Fourth, the contest sponsor should
provide opportunities to signal skills beyond performance in the current competition. On
Kaggle, for example, competitors can develop and share code to analyze a dataset even if
they do not participate in a competition. Fifth, the contest sponsor should facilitate the
enforcement of prize splits among team members.6

While most Kaggle competitions allow the formation of self-organized teams, other plat-
forms that hosts contests do not permit teammwork. Our results suggest that some contest
sponsors may have overlooked the potential benefits of facilitating teamwork. Our policy
recommendations are low-cost interventions that can greatly enhance the value of contests.

Related Literature. Our paper broadly relates to the literature on dynamic contests design
(see, e.g., Bhattacharya, 2021; Gross, 2017; Benkert and Letina, 2020). We show that self-
assembled teams improve performance in contests, which contributes to the broader literature
on teamwork and performance (see, e.g., Hamilton et al., 2003; Jones, 2009; Ahmadpoor and
Jones, 2019).

Teamwork can cause productivity gains from teammembers’ comparative advantages (Büyük-
boyacı and Robbett, 2017; Büyükboyaci and Robbett, 2019), knowledge diversity (LiCalzi
and Surucu, 2012), or by team decisions being less likely influenced by biases, cognitive lim-
itations, and social considerations (see, e.g., Cooper and Kagel, 2005; Sutter et al., 2013;
Müller and Tan, 2013; Feri et al., 2010). We do not observe task allocation and decision
making within teams. However, we find that teams are composed by “similar” players, where
similarity is measured based on past and current performance.

In our setting, players must work independently before forming a team (on average, players
send 16 solo submissions before forming a team). Girotra et al. (2010) find that teams formed
after players work on their ideas independently perform better than teams where members
work together since the team’s inception.

Regarding team size, we find that two- and three-member teams represent 80 percent of all
teams, and larger teams do not necessarily perform better. Wu et al. (2019) uses academic
papers, patents, and software products to show that smaller teams produce more disruptive
research, whereas larger teams expand on the existing knowledge. Ahmadpoor and Jones

5Kaggle allocates “medals” based on performance. However, some have questioned the real value of a
medal, especially if each member of a multiplayer team gets one regardless of their contribution.

6In some competitions, it is up to the winning team to reallocate the prize money among its members. In
others, the platform allocates the prize in even shares between the team members unless the team requests
an alternative prize distribution. See, e.g., some competitions hosted in the platform DrivenData.org.
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(2019) find that teamwork has greater impact than solo work. Azoulay et al. (2010) and
Jaravel et al. (2018) show that the premature death of high-skilled team members worsens
the future performance of the remaining team members.

Some descriptive articles have also studied teamwork in Kaggle competitions. These articles
do not provide causal estimates of the impact of teamwork on contest outcomes nor they
model team formation. For example, Wang et al. (2019) discuss repeated participation
in Kaggle competitions. Dissanayake et al. (2019) document that members with similar
characteristics form most teams, although teams where members have diverse characteristics
perform better. Dissanayake et al. (2015) also find that less diverse teams perform worse,
unless most of their members are high-skilled. None of these papers structurally estimate a
model of team formation.

2 Background and Data

2.1 Kaggle Competitions

Kaggle is a platform that hosts online prediction contests, where participants predict a ran-
dom variable (e.g., YouTube sponsored a competition where players had to predict video
tags for videos). The player with the most accurate predictions wins the competition. We
focus on featured competitions, which are hosted by a company (e.g., YouTube, Expedia)
and pay an average monetary prize of $48,434 (USD). These competitions usually attract
many players, last several months, and participants can submit multiple times before the end
of the competition (though there is a limit on the number of submissions that players can
make in a given day).

Participants of Kaggle competitions have access to two datasets. The first one, the training
dataset, includes both an outcome variable and covariates, and is used by the participants
to train their algorithms. The second one, the test dataset, only includes covariates. When
making a submission, the player must submit outcome-variable predictions for each obser-
vation in the test dataset. Kaggle partitions the test dataset in two subsets and evaluates
the out-of-sample performance of each submission on these two subsets.7 The out-of-sample
performance of each submission on the first subset, the public score, is instantly posted on
a public leaderboard.8 The out-of-sample performance of each submission on the second

7Players do not know which of these subsets a given observation in the test dataset belongs to.
8The evaluation criterion for the out-of-sample performance of a submission varies across contests. Ex-
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Table 1: Competition-level summary statistics

Count Mean St. Dev. Min Max
(1) (2) (3) (4) (5)

Total number of submissions 149 24,787.48 32,416.34 139.00 159,810
Total number of teams 149 1,495.04 1,772.96 29 10,450
Total number of players 149 1,587.93 1,881.41 30 11,111
Average team size 149 1.17 0.13 1.01 1.74
Reward quantity (USD) 149 48,434.21 128,676.46 0 1,200,000

Notes: An observation is a competition.

subset, the private score, is made public at the end of the competition only and is used to
determine the winner. Public and private scores are highly correlated (the correlation in our
sample is 0.99), making public scores informative but noisy signals of performance.

Players are free to form teams subject to some restrictions. First, each member of the
new team must have made at least one submission prior to the team formation. In our
sample, team players submitted an average of 16 submissions prior to the team formation.
Second, the cumulative number of submissions by all team members prior to the merger
cannot exceed a threshold—the maximum allowed submissions per day times the number of
days the competition has been running. Third, they must form their team before the team-
formation deadline chosen by Kaggle for each competition. Fourth, players cannot disband
teams that have made submissions.

2.2 Data and Descriptive Evidence

We use publicly available information on 149 featured competitions hosted by Kaggle.9 An
observation in our dataset is a submission in a contest. For each submission, we observe its
timestamp, an identifier for the player (and team) who made it, and its public and private
scores. We also observe data on team formation: the exact date when a player joins a team,
whether the team fails (i.e., stops making submissions). These data allow us to keep track
of the performance of a player (or team) during the contest as well as reconstruct both the
public and private leaderboard at every instant of time.

Table 1 reports competition-level summary statistics. The table shows that these competi-
tions offer a monetary prize of $48,434 (USD) on average, with some competitions offering

amples of evaluation criteria include the root mean squared error or R2.
9https://www.kaggle.com/kaggle/meta-kaggle
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Table 2: Distribution of team size across competitions

Freq. Percent Cumulative
Number of members (1) (2) (3)
Panel A: All teams
1 205,193 92.11 92.11
2 10,302 4.62 96.74
3 3,873 1.74 98.48
4 1,799 0.81 99.28
5 or more 1,594 0.72 100.00
Total 222,761 100.00

Panel B: Top 40 teams
1 4,116 69.49 69.49
2 839 14.17 83.66
3 423 7.14 90.80
4 241 4.07 94.87
5 or more 304 5.13 100.00
Total 5,923 100.00

Notes: An observation is a competition–team combination. The top 40 teams are the teams who finished
within the first fifty positions of the private leaderboard in each competition.

as much as $1,200,000, and attract a large number of participants who make many submis-
sions. On average, 1,495 teams made at least one submission, and the competitions received
an average of 24,787 submissions. We standardize the public and private scores of the sub-
missions variables at the competition level (they have mean 0 and standard deviation 1) to
facilitate comparison across competitions. Depending on the contest’s metric for evaluating
the out-of-sample performance of submissions, players compete to achieve low scores (e.g.,
RMSE) or high scores (e.g., R2). We transform scores so that higher scores can always be
interpreted as better scores.

Table 2 presents the distribution of team size across competitions.10 Panel A includes the full
sample of teams and shows that 92 percent of them have a single member and 4.6 percent
of teams have two members. Panel B restricts attention to the teams that finish the contest
within the top 40 and shows that teamwork is more frequent in the top 40: Only 69 percent
of these teams have a single member, while 14 percent have two.

One important fact about teams is that 8.4 percent of them “fail,” i.e., they stop making
submissions after they form. The number is even higher in the subsample of teams that finish

10Figure A.1, in the Online Appendix, shows that distribution of team-formation time is roughly uniform.
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Figure 1: Share of teamwork by final ranking
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Notes: An observation is a team that finished a competition in the top 30 positions of the final ranking.

in the top 40: 26 percent. That is, teamwork appears to be unproductive for some players to
the point that they stop participating in the competition.11 Furthermore, most players who
form a team do so only once (84.3 percent of players). This suggests that some players may
regret forming a team, even though they may have believed it was a good idea ex ante, or
that players reap all the benefits from teamwork after participating in a team once.

The scant number of teams and non-negligible rate of team failure suggests that forming a
team is costly and the prospects of forming a team are uncertain. However, the evidence
shows that teams that do not fail do well relative to single players. First, Table 2 shows that
teams are relatively more common among the top 40 players. Second, Figure 1 shows the
share of teams across contests by player ranking at the end of the competition, and the figure
reveals that higher ranked players are likelier to be part of a team. For instance, about 60
percent of the time a team took the first place, while only about 30 percent of the time a
team took the 30th place. Thus, top players are far more likely to be part of a team than to
work solo.

One of the goals of our paper is to understand if there is a causal relationship between
teamwork and performance. Sections 3 and 4 are devoted to studying whether this positive
relationship between teamwork and performance is, in fact, causal. In Sections 5 and 6 we
explore the cost and incentives of forming teams and discuss implications for contest design.

11To understand team failure, we ask whether teams composed of “similar” players are more likely to
succeed. We measure similarity between players in a given contest by the disparity between the number of
submissions and the maximum score among team members before the team forms. Table A.1 in the Online
Appendix shows that when “dissimilar” players form a team, they are more likely to fail.
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3 Empirical Strategy

To measure the impact of teamwork on performance, we exploit variation on the state of a
competition at the time of team formation. We compare the performance of team members
before and after they join a team with the performance of solo players.

Our main estimating equation is

yi,j,c,t = β · 1{post team formation}i,j,c,t + h(xi,j,c,t, δ) + µj,c + λc,t + εi,j,c,t, (1)

where yi,j,c,t is a measure of an outcome variable i (e.g., score of submission i) by “player” j (a
team or a solo player) in competition c at time t, 1{post team formation}i,j,c,t is an indicator
that takes the value one if player j forms a time at time t, xi,j,c,t is a vector of time-varying
player-level state variables, such as the player’s distance to the maximum score on the public
leaderboard, which is a time-dependent variable defined as the difference between the player’s
score at time t and the maximum score at time t. The term h(·, δ) is a quadratic function of
the state variables, µj,c and λc,t are player–competition and competition–time fixed effects,
respectively, and εi,j,c,t is an error term clustered at the player level. We also estimate a
version of Equation 1 that allows for time-varying effects,

yi,j,c,t =
6∑

τ=−6
1{τ weeks before/after team formation}i,j,c,tβτ +h(xi,j,c,t, δ) +µj,c+λc,t+ εi,j,c,t,

(2)
where β−τ and βτ , for τ = 1, ..., 6 capture, respectively, the performance of a player τ weeks
before and τ weeks after the team forms, for players who join a team.12 In our analysis,
all the submissions of all members of team j have the same team identifier, even those that
are submitted before the team forms. The coefficient of interest, β, therefore, measures the
impact of teamwork on the overall performance of all team members. We restrict our analysis
to teams that did not fail, i.e., teams that send at least one submission after they form.

Identification. The main identification assumption is that treatment assignment is uncon-
founded. That is, the probability that a solo player is exposed to the treatment (i.e., forms a
team) may depend on player-level state variables (xi,j,c,t) and the player’s ability to produce
high scores (captured in the player-level fixed effects), but it does not depend on the potential
outcomes (Imbens and Rubin, 2015). In our framework, this can also be interpreted as form-
ing a team being exogenous conditional on player-level state variables and the player’s ability

12We normalize the coefficient β−1 to zero. β0 captures the effect of teamwork at the week of the team
formation.
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to produce high scores, implying that the treatment is uncorrelated with performance-related
unobservables in the error term. Under this assumption, β can be identified by comparing
the observed scores of treated and non-treated teams that have similar state variables.

The unconfoundedness assumption is compatible with the idea that team formation is en-
dogenous, i.e., a set of players form a team when they expect that the benefits will exceed
the costs of forming a team. In particular, unconfoundedness accommodates the cases in
which a player’s decision to form a team can be explained based on observable state variables
(e.g., their position in the leaderboard) or performance-unrelated unobservables (e.g., the
size of their social network). This assumption, however, does not accommodate the case in
which performance-related unobservables in the error term affect the decision to form a team.
For example, a violation of the unconfoundedness assumption would occur if all participants
had perfect foresight about the gains of teamwork and these gains are heterogeneous across
players. In this case, team formation would only occur among players expecting sufficiently
large gains, and these gains would at least in part appear in the error term.

Plausibility of Unconfoundness. We assess the plausibility of the unconfoundness as-
sumption in two ways. First, we use the estimates of Equation 2 to evaluate whether the
performance of treated and non-treated teams, conditional on state variables, exhibit similar
trends running up to the time of the team formation. Second, we present descriptive evidence
suggesting that collaboration gains are uncertain, from the perspective of a solo player, which
implies that post team formation performance-related unobservables are unlikely to be the
only driver of team formation.13

Estimation Methods. The first approach uses the full sample of solo players and two-
member teams. We exclude larger teams to insulate our estimates of the impacts of collabo-
ration from instances of multiple treatments during the competition (i.e., teams that invite
multiple players during the competition and thus experience the benefits of collaboration in
multiple different occasions). If the treatment assignment is unconfounded, the estimated β
coefficient will capture the causal impact of teamwork on outcomes.

We estimate the coefficients of interest in three ways. First, we estimate the equations above
using the full sample, which amounts to a differences-in-differences design where we control
for observable variables and fixed effects.

13Another concern is that we may not observe collaboration instances that are informal. That is, players
who share information or code but never formally merge. We note that to the extent that collaboration
increases performance, not observing these informal arrangements would lead us to underestimate the impact
of collaboration on team performance.
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Second, we estimate the equations above using exact matching to alleviate the concern that
treated and control players differ in observables. Specifically, we match every team member
with a non-treated solo players that have the same state variables at the time of the team
formation (e.g., the same number of cumulative submissions and distance to the maximum
score on the leaderboard). Although all of our specifications control for these state vari-
ables, the matched subsample ensures that we are comparing teams that are observationally
equivalent except for being exposed to teamwork. Although players must submit at least one
submission prior to forming a team, they are not required to make more submissions after
merging. We observe 8,466 teams between two players for which submissions were recorded
after the time of the team formation. Our matching procedure matches 7,474 of these teams
with solo players with the same characteristics at the time of the team formation (i.e., the
same number of cumulative submissions and the same distance to the maximum score on the
leaderboard). Table A.2 in the Online Appendix presents a balance analysis for the treated
and control teams in the matched subsample.

Third, we use a two-step, Heckman-style selection bias correction (Heckman, 1979) similar to
the one used by Lee (1978). In the first step, we estimate a player-level probit model for the
probability of forming a team at time t given a rich set of state variables and an indicator for
whether the player is eligible to form a team.14 Players are eligible to form a team if they join
the competition before a preset deadline to form teams. Players must join the competition to
download the data and learn about the rules of the competition (one of which is the deadline
to form teams). Lemus and Marshall (2021) document that the distribution of entry times
of players is roughly uniform throughout a contest, suggesting that players learn about a
competition at different times and likely join for reasons that are unrelated to the potential
benefits of team formation, making entry time (or the eligibility indicator to be precise) a
plausibly exogenous shifter of the probability of forming a team. We use the probit estimates
to compute the Mills ratio for every player–time combination, which captures the expected
value of unobservables governing the decision to form a team (conditional on treatment). We
then incorporate the Mills ratio estimates in a version of Equation 1. This approach has
the benefit of relaxing the requirement of the treatment indicator being uncorrelated with
performance-related unobservables (i.e., it relaxes the unconfoundness assumption).

14Specifically, for every contest, we estimate Pr(formed teami,j,c,t = 1) = Φ(α + 1{elegible}i,j,c,tβ +
h(xi,j,c,t, δ)), where i is a player; the notation is the same as in Equation 1.
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4 The Impact of Teamwork on Performance

4.1 Scores

We begin our discussion on the impacts of teamwork by measuring its effect on performance,
i.e., the variable y corresponds to scores. As discussed in Section 2, 8.4 percent of teams that
are formed “fail” in that their members stop making submissions after team formation. We
can say that the impact of teamwork on the performance of the teams that fail is negative,
but we are also interested in learning about the impact of teamwork on the performance of
the teams that remain active. The analysis that we present next focuses on the teams that
remain active.

Figure 2 presents our estimates for Equation 2, which allows us to measure the performance
effects of teamwork starting from 6 weeks prior to the actual team formation until 6 weeks
after. We conduct the analysis for both the public and private scores on two samples. In
Panel A, we make use of the full sample of solo players and two-member teams, which implies
that solo players are the control for two-member teams. In Panel B, we further restrict the
sample so that every player in a team is matched with a solo player with the same covariates
at the time of the team formation (i.e., the same number of cumulative submissions and the
same distance to the maximum score on the leaderboard). All specifications include player–
competition fixed effects, competition–day fixed effects, and a second-degree polynomial of
a number of player-level state variables. These state variables include, at any given time t,
the total number of submissions by all players up until t, total number of submissions by the
player making the submission up until t, total number of submissions by the team making
the submission (possibly a solo player) up until t, the submitting player’s team’s distance to
the maximum score on the public leaderboard at t, and the fraction of contest time that had
elapsed at t. Although the decision to form a team may respond to state variables, which
we are flexibly controlling for, our identification assumption is that team formation does not
respond to performance-related unobservables (i.e., treatment assignment is unconfounded).

Figure 2 (Panel A) shows that, prior to the actual team formation, public and private scores
for treated and non-treated players are statistically indistinguishable, which provides support
for our assumption of unconfounded treatment assignment. After the actual team formation,
treated players (those who join a team) perform significantly better than non-treated players,
with effects that manifest immediately and last for at least 6 weeks after the team formation.
In the first week after the team forms, the effect is about 0.05 or 0.06 standard deviations, and
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Figure 2: The impact of collaboration on scores: Team-level estimates

Panel A: Baseline estimates
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Panel B: Matching estimates
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Notes: Standard errors are clustered at the team-level, and 95-percent confidence intervals are depicted in
the figures. An observation is a submission made by a team in a competition. All specifications include team
fixed effects, competition–day fixed effects, and a second-degree polynomial of variables: total number of
submissions by all teams up until the submission time, total number of submissions by the team making the
submission up until the submission time, total number of submissions by the member of the team making the
submission up until the submission time, the submitting team’s distance to the maximum score on the public
leaderboard at the submission time, and the fraction of contest time that had elapsed at the submission time.
The sample is restricted to include submissions by treated teams that took place six weeks before or after
the week in which the team changed its team size, and it also restricts attention to teams with one or two
members. Panel B further restricts the sample to ensure balance in observables (measured at the time of
treatment).
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Table 3: The impact of collaboration on scores: Team-level estimates

Public score Private score
(1) (2)

Panel A: Baseline estimates
Teamwork 0.078∗∗∗ 0.085∗∗∗

(0.014) (0.016)
Observations 3,248,210 3,179,632
R2 0.439 0.448

Panel B: Matching estimates
Teamwork 0.041∗∗∗ 0.050∗∗∗

(0.012) (0.015)
Observations 342,716 338,431
R2 0.335 0.361

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. All specifications include team fixed effects,
competition–day fixed effects, and a second-degree polynomial of variables: total number of submissions by
all teams up until the submission time, total number of submissions by the team making the submission up
until the submission time, total number of submissions by the member of the team making the submission up
until the submission time, the submitting team’s distance to the maximum score on the public leaderboard
at the submission time, and the fraction of contest time that had elapsed at the submission time. The sample
is restricted to include submissions by treated teams that took place six weeks before or after the week in
which the team changed its team size, and it also restricts attention to teams with one or two members.
Panel B further restricts the sample to ensure balance in observables (measured at the time of treatment).

then it climbs to about 0.11 or 0.12 standard deviations and remains at that level thereafter.15

Panel B repeats the exercise using the matched subsample. The figures look very similar to
those in Panel A, with the exception that the estimated effects are smaller in magnitude
than those in Panel A. The smaller magnitudes likely reflect that the control and treatment
groups in Panel B are less different in the state variables that predict good performance.

Table 3 presents estimates for Equation 1, which constrains the treatment effect to be constant
in the post team formation period. Panel A shows that teamwork causes an increase in public
and private scores of 0.078 and 0.085 standard deviations, respectively. When restricting the
sample to the matched subsample, these estimates drop to 0.041 and 0.05, respectively. How
large are these magnitudes? The median score difference between the winner of the contest
and the player who finishes in the 40th position is about 0.05, which suggests that teamwork
has an economically significant effect.

While the analysis above focuses on the impact of teamwork on the score of a submission, we
15Recall that both public and private scores are standardized (i.e., have mean 0 and standard deviation 1).
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Figure 3: The impact of collaboration on final scores: Matching estimates
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Notes: An observation is the difference in an outcome of interest between a treated team and a control team
that was identical in number of submissions and maximum score at the time of treatment—see Figure 2.
Vertical lines indicate the mean of the distributions.

are also interested in learning about the impact of teamwork on the final outcomes of a team
(i.e., best score, final ranking, number of submissions). To this end, Figure 3 compares the
final outcomes of each treated team relative to a player that was observationally equivalent at
the time of treatment but did not engage in teamwork (i.e., identical in number of submissions
and maximum score at the time of team formation).16 Panel A shows that treated teams
achieved a final score that was on average 0.12 standard deviations greater than a similar
solo team, suggesting that the benefits of teamwork have a material impact on the final
standings. The figure does show heterogeneous benefits of teamwork, with many negative

16The comparison corresponds to computing the difference between the outcome variables at the end of
the competition for both teams.
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values, which highlights the uncertain returns of teamwork. Panel B shows that teamwork
on average increases the ranking of a team by 248 positions. Panel C shows that treated
teams on average decrease their number of submissions by 18 percent—a figure that includes
teams that fail and teams that remain active. Combined, these results suggest that teamwork
decreases the volume of submissions but increases the quality of submissions on average.

Robustness. We also explore whether the impact of teamwork on performance is heteroge-
neous across different types of players and contests. In Table A.3 in the Online Appendix, we
replicate Table 3 using a subsample of “competitive players” and find that our estimates do
not significantly change as a result (i.e., the point estimates change by less than 10 percent
of the standard error), which suggests that our results are not driven by stronger players.17

Table A.4, in the Online Appendix, shows that the performance gains of teamwork are no
different (in statistical terms) in more difficult contests (e.g., contests where players must
analyze image data, contests with larger rewards, or contests with larger datasets).18

Table A.5 in the Online Appendix replicates Table 3 using indicators for whether a submis-
sion has a score that exceeds percentile x of the competition-level score distribution as the
dependent variable.19 The table shows that teamwork has a positive impact on a team’s
probability of achieving extreme scores, e.g., the probability of achieving a private score that
exceeds the 95th and 99th percentile of the distribution increases by 6.6 and 2.3 percentage
points on average as a consequence of teamwork. These findings suggest that the performance
gains of teamwork are payoff-relevant by allowing players in a team to score in the upper
tail of the score distribution. Moreover, they suggest that teamwork is likely to benefit the
contest sponsor in the form of a thicker upper tail of scores. We will explore these questions
more in depth in Section 5.

Selection. A remaining concern is whether, after controlling for observables and fixed effects,
the impact of teamwork on performance is explained by unobservables driving the incentive
to form teams, e.g., players know their skills are complementary so teamwork is beneficial.
In other words, the concern is that the results in Figure 2 and Table 3 are driven by selection
along the dimension of unobserved performance gains of teamwork that are heterogeneous
and players can foresee. As mentioned in Section 2, a number of facts suggest that players
face uncertainty about whether teamwork will be productive for them (e.g., 8.4 percent of
all teams fail). Figure 3 lessens this concern by showing that the gains of teamwork are not

17A player is classified as competitive if it achieved a score within the top quartile of the competition-level
score distribution by the end of the competition.

18Lemus and Marshall (2021) present evidence showing that the reward quantity is associated with difficulty.
19The competition-level score distribution is the final distribution of scores of every competition (i.e., all

submissions are used to compute this distribution).
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Table 4: The impact of collaboration on scores: Player-level estimates

Public score Private score
(1) (2) (3) (4)

Teamwork 0.027∗∗∗ 0.020∗∗∗ 0.032∗∗∗ 0.027∗∗∗
(0.008) (0.008) (0.010) (0.010)

Mills ratio No Yes No Yes
Observations 2,547,264 2,547,264 2,478,046 2,478,046
R2 0.385 0.385 0.394 0.394

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a player in a competition. All specifications include player-competition
fixed effects, competition–day fixed effects, and a second-degree polynomial of variables: total number of
submissions by all teams up until the submission time, total number of submissions by the team making the
submission up until the submission time, total number of submissions by the member of the team making the
submission up until the submission time, the submitting team’s distance to the maximum score on the public
leaderboard at the submission time, and the fraction of contest time that had elapsed at the submission
time. The Mills ratio is computed based on estimates of a Probit model on the decision to form a team,
which is estimated separately for each competition, and includes a dummy for whether the user entered
the competition before the team formation deadline as well as a second-degree polynomial of the variables
described above. The sample is restricted to include submissions by treated teams that took place six weeks
before or after the week in which the team changed its team size, submissions for which the Mills ratio can
be computed, and to teams with one or two members.

always positive. Nevertheless, we perform a number of robustness checks.

Table 4 presents the results of a correction along the lines of Lee (1978), which relaxes
the unconfoundness assumption. Columns 1 and 3 replicate Table 3 (Panel A), with two
differences. The first one is that we replace the team-level fixed effects with team-member-
level fixed effects, as the Mills ratio estimates are constructed at the individual level, and the
second one is that we restrict the sample to those observations for which we can compute
the Mills ratio. Columns 1 and 3 show that the gains of teamwork are smaller than those
in Table 3, possibly because the player-level fixed effects are more flexible and can absorb
any changes in the composition of submission authorship caused by teamwork. Columns 2
and 4 show the point estimates after we implement the selection correction, which cuts the
impact of teamwork on public scores drop by 25 percent and on private scores by 16 percent.
However, the impact of teamwork on scores remains economically relevant after we correct
for selection.

In addition, Table A.6, in the Online Appendix, replicates Table 3 restricting the sample of
treated players to those who are forming a team for the first time. If players who know the
benefit of teamwork select into working in teams, this form of selection is least likely among
players who have never worked in teams and have the least amount of information about the
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benefits of teamwork. That is, selection in performance-related unobservables is less likely
among this sample, thus making unconfoundness more plausible. If anything, we find larger
estimates of the impact of teamwork on performance, suggesting that this form of selection
is not driving our results.

Second, Table A.7 in the Online Appendix shows that the impact of teamwork on performance
is unaffected by the timing of the team formation (whether the team was formed early or late
in the competition). If players form teams because they know that there are large benefits
from teamwork, one would expect that teams would form as early as possible to maximize the
benefits of teamwork.20 In particular, those who expect the greatest benefits of collaboration
should form teams earlier. We do not see this happening. Moreover, on average, players who
form teams have sent 16 submissions prior to the team formation.

These pieces of evidence combined points towards a positive causal relationship between
teamwork and productivity.

4.2 Number of submissions

We next study the impact of teamwork on the number of submissions by a team. We estimate
a version of Equation 1 where the dependent variable, y, corresponds to the number of
submissions by each team in every week of the competition. In the analysis, an observation
is a team–week–competition combination. We estimate specifications that differ in how
we treat the weeks in which a team makes zero submissions. In the first specification, all
team–week combinations are included, whereas in the second we only include the team-week
combinations that lie between the first and last week with a positive submission count for
that team (i.e., the weeks when the team was active).21 The results of the first specification
provide an estimate of the impact of teamwork on the number of submissions that includes
failed teams (i.e., those that stop making submissions after team formation), whereas those
from the second specification provide an estimate for the impact of teamwork on the number
of submissions by teams that remain active.

Table 5 presents the estimates of our analysis. Panel A shows that teamwork causes the
number of submissions per week by the players that formed the team to decrease by 1.5

20As previously mentioned, Figure A.1 in the Online Appendix shows that team formation occurs through-
out the competition and is not concentrated at the beginning.

21For example, if a teams makes 0, 1, 0, 1, and 0 submissions in the five weeks of a competition, respectively,
we only include weeks 2, 3 and 4 in the estimation sample. This choice is based on the assumption that the
team did not enter until week 2 and was already inactive in week 5.
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Table 5: The impact of collaboration on the number of submissions: Team-level estimates

Number of submissions Number of submissions
per week per week (while active)

(1) (2)
Panel A: Baseline estimates
Teamwork -1.488∗∗∗ 0.162

(0.213) (0.405)
Observations 1,307,553 424,819
R2 0.657 0.688

Panel B: Matching estimates
Teamwork -0.119 0.279

(0.181) (0.201)
Observations 75,962 43,690
R2 0.537 0.573

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
An observation is a competition–team–week combination. All specifications include team fixed effects and
competition–week fixed effects. The sample is restricted to include submissions that took place in the first
twelve weeks of the competition and teams of up to two members. Panel B further restricts the sample to
ensure balance in observables (measured at the time of treatment).

submissions when including all player–week combinations (Column 1) or to not decrease at
all when considering only the active periods of teams (Column 2). We find similar qualitative
effects when looking at the matched subsample (Panel B), but the effects are not statisti-
cally different than zero. These estimates suggest that players do not change their behavior
significantly after they form teams, unless their team fails.

As mentioned in Section 2, 8.4 percent of teams “fail”—this figure is even higher among top
ranked teams—and make no submissions after they form. Thus, Table 5 shows that teams
that remain active do not seem to be changing the rate at which they make submissions (Col-
umn 2). However, a significant share of teams fail, so the number of submissions considering
all teams, including those that fail, decreases (Column 1).

4.3 Implications for Contest Design

What do these results imply for contest design? The competition sponsor cares about the
best submissions in the competition. Allowing teamwork creates a tradeoff: successful teams
increase performance but some of them fail. Thus, a contest that bans teamwork would
receive more, lower-quality submissions, while one that permits teamwork would receive
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fewer, higher-quality submissions.

To determine whether teamwork leads to better outcomes, we would need to compare the
equilibrium in a contest that allows teamwork with the equilibrium of a similar contest that
bans teamwork. We cannot do this with our data because we only observe contests that allow
teamwork. For this reason, in the next section, we develop a structural model to measure
the impact of banning teamwork on contest outcomes.

5 Equilibrium Effects of Teamwork

In this section, we present a structural model of team formation. We estimate key structural
parameters and use them to investigate the impact of contest design and competition on
team formation and contest outcomes.

5.1 Empirical Model

There are N forward-looking players competing in a contest. Time is discrete, the horizon
is infinite, and payoffs are undiscounted. Players make submissions over time and can form
teams. At every period, only one player (either a solo player or a team) is the leader of
the competition and everyone else is a follower. A public leaderboard displays, in real-time,
the maximum score and the identity of the leader. The game ends in any given period with
probability µ or when the maximum score has reached a value s̄. The leader at the end of
the contest earns a prize of π and followers get 0. In the event that a team wins the contest,
the team members of the winning team split the prize evenly.

The state space is:

S = {(s, n) : s = 0, ε, ..., s̄; na = 0, ..., N/2; nf = 0, ..., na; nsp = N − 2(na + nf)},

where s is the current maximum score, n = (nsp, na, nf), nsp is the number of solo players,
na is the number of active teams, and nf is the number of failed teams. Team failure is
inspired by the descriptive evidence in Section 2: when a team forms and fails its members
stop making submissions and become inactive. The constraint nsp = N − 2(na + nf) reflects
that all teams consist of two members. Players publicly observe and keep track of these state
variables.
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At any moment in the contest, there can be four types of players: (1) a follower solo player,
(2) a player that belongs to a follower team, (3) a player that belongs to the team leading
the competition, and (4) a solo player leading the competition. The terminal values for each
type of player are

F sp
end = 0, F team

end = 0, Lteam
end = π

2 , Lsp
end = π,

where we assume that team members split the prize evenly in the event of winning the
contest.

For any period in which the contest has not ended, there are two independent and mutually
exclusive events. First, with probability λ1, one of the active players (i.e., a player that does
not belong to a failed team) makes a submission. This active player is either a solo player or
belongs to a team. When a player of type θ ∈ {team, solo player (henceforth, sp),} makes
a submission, the maximum score s increases to s + ε with probability qθ(s), where qθ(·) is
decreasing (i.e., it becomes harder to advance the maximum score as the maximum score
increases). The benefit of teamwork is captured by teams advancing the maximum score
with a higher probability: qteam(s) > qsp(s) for all s.

Second, with probability λ2 one of the follower solo players can form a team (but cannot
make a submission in the current period). As a simplification, we assume that a solo player
leading the competition does not consider forming a team. A follower solo player choosing
to form a team can always do so provided that nsp ≥ 2 (i.e., there are at least two solo
players available). The cost of teamwork has two components: i) a direct cost of forming
a team (players draw a team-formation cost, c, from the distribution K); and probabilistic
success, as a team fails with probability 1 − γ and becomes unproductive. Our assumption
that team formation is costly is motivated by discussions we had with Kaggle users who
suggested that screening potential team members is costly, as there is uncertainty regarding
who can be a good match.22 We assume that the player proposing to form the team bears
the team-formation cost. Note that when a solo player benefits from teamwork inclusive of
paying the team-formation cost, any other solo player invited to join a team without paying
the team formation cost will accept because solo-players’ incentives are symmetric.

We next derive the value functions for each type of player and proceed to compute the
equilibrium of the game.

22See Online Appendix B for details.
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Solo Player, Follower. The interim value of a follower solo player (denoted by player i) is

F sp
s,n = µF sp

end + (1− µ)
[
ψ(n)F sp

s,n + λ1

N
F sp,own
s,n + 2na

N
λ1F

sp,rival team
s,n

+(nsp − 1)
N

λ1F
sp,rival sp
s,n + (nsp − 1)

N
λ2F

sp, team forms
s,n + 1

N
λ2F

sp, forms team
s,n

]
. (3)

In this expression, with probability µ the contest ends and player i receives F sp
end. If the

contest does not end, which occurs with probability 1 − µ, there are 6 cases. (1) With
probability ψ(n), none of the active players makes a submission and none of the solo players
can form a team. Thus, the state does not evolve and player i receives continuation value
F sp
s,n. (2) With probability λ1/N , player i gets to make a submission and receives F sp,own

s,n . (3)
With probability 2na

N
λ1, a team makes a submission and player i receives F sp,rival team

s,n . (4)
With probability (nsp−1)

N
λ1, one of the solo players (other than i) makes a submission, and

player i receives F sp,rival sp
s,n . (5) With probability (nsp−1)

N
λ2, one of the solo players can choose

to form a team, and player i receives F sp, team forms
s,n . (6) With probability 1

N
λ2, player i can

form a team and receives F sp, forms team
s,n .

The probability that nobody makes a submission nor forms a team is

ψ(n) = (1− λ1 − λ2 + 2λ1n
f/N + 2λ2(na + nf )/N),

which is the complementary probability of someone making a submission or deciding to form
a team. Next, a submission by a player of type θ ∈ {sp, team} transitions the state from
(s, n) to (s′, n) with probability qθ(s). If the submission increases the maximum score and it
comes from a follower, then that follower becomes the leader and the former leader becomes
a follower. Thus, the continuation values of a follower solo player when that player, a rival
team, or a rival solo player makes a submission are given by

F sp,own
s,n = qsp(s)Lsp

s′,n + (1− qsp(s))F sp
s,n,

F sp,rival team
s,n = qteam(s)F sp

s′,n + (1− qteam(s))F sp
s,n,

F sp,rival sp
s,n = qsp(s)F sp

s′,n + (1− qsp(s))F sp
s,n,

respectively.
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The value of player i when solo player j (with j 6= i) can form a team is

F sp, team forms
s,n = (1− ps,n)F sp

s,n + ps,n
1

nsp − 1
(
γF team

s,(nsp−2,na+1,nf) + (1− γ) · 0
)

+ps,n
nsp − 2
nsp − 1

(
γF sp

s,(nsp−2,na+1,nf) + (1− γ)F sp
s,(nsp−2,na,nf+1)

)
.

Player j chooses to not form a team with probability 1− ps,n, in which case player i receives
F sp
s,n, and where ps,n is an equilibrium object we derive below. With probability ps,n, player
j chooses to form a team with one of the nsp − 1 solo players.23 The new team includes
player i with probability 1/(nsp − 1) (i.e., every available solo player is chosen with equal
probability). The team is successful (i.e., the team does not fail) with probability γ, and
player i receives F team

s,(nsp−2,na+1,nf); with probability (1−γ) the team fails, and player i receives
0 (i.e., the value of a failed team). With probability (nsp − 2)/(nsp − 1), player j forms a
team with a solo player other than player i. In this case, player i continues being a follower
solo player, and the there is one more active team with probability γ and one more failed
team with probability 1− γ.

Lastly, we have player i’s decision to form a team. There are three factors influencing this
decision. First, there is a direct cost of forming a team, c ∼ K. Second, with probability
γ the team will fail and player i will get 0. Third, while a team increases the chances of
becoming the leader of the competition (because qteam(s) > qsp(s), for all s), the prize is
evenly split among team members. Thus, a solo player forms a team only if the marginal
benefit is larger than the cost, which implies that the probability of team formation is

ps,n = Pr(c < γF team
s,(nsp−2,na+1,nf) − F sp

s,n), (4)

and the expected continuation value of forming a team is

F sp, forms team
s,n = Ec

[
max{γF team

s,(nsp−2,na+1,nf) + (1− γ) · 0− c, F sp
s,n}

]
.

Other Players. There are three other types of players: (i) a player that belongs to a follower
team, (ii) a member of the team leading the competition, and (iii) a solo player leading the
competition. These types of players are not actively choosing whether to form a team because
they either already belong to a team, or in the case of a solo player leader, we assume they
do not consider teamwork while leading the competition. Nevertheless, the values of these

23In the model, players are not keeping track of whether the leader is a solo player or a team. If the leader
is a solo player, then one fewer player is available to form a team, but we are not incorporating that into the
model, as it only affects the interim payoff of a solo player and the effect is small.
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players evolve as the state variables change.

The description of the value functions of these players is similar to the description of the value
function of a follower solo player (see Equation 3). For this reason, and to avoid repetition,
we refer the reader to Online Appendix C for a detailed description of these equations.

Equilibrium. We solve the game by backward induction. Although the horizon is infinite,
the state variables reach a point at which they stop evolving. Specifically, we assume that the
game ends when the maximum score reaches the highest possible value s̄, and there cannot
be more teams than N/2. We can compute the value functions for all combinations of state
variables that are “terminal” and work backwards to fully solve the model.

Discussion of Modeling Assumptions. Our model captures team formation in dynamic
contests, where players are presented with opportunities to form teams over time and (dynam-
ically) choose whether to form a team. The benefit of teamwork is to increase the likelihood
of becoming the competition leader. This assumption is motivated by our empirical findings
in Section 4. On the other hand, forming teams is costly and uncertain (some team fails).
Moreover, in the event of winning, team members share the prize equitably. Players take into
account the benefit and the cost of forming teams whenever they get a stochastically-arriving
opportunity to form a team. In terms of dynamic incentives, a player’s decision to form a
team takes into account: (1) the current score; (2) the cost of forming a team; (3) the likeli-
hood that they will have a future opportunity to form a team; (4) the expected composition
of players in the rest of the contest (i.e., rivals may form teams in the future).

To keep the model tractable and to focus on the incentives of team formation, we abstract
from a number of complexities. We make simplifying assumptions to reduce the state space
and facilitate model estimation. These assumptions include a stochastic end of the contest
(to avoid keeping track of time), a maximum score at which the contest ends (to solve by
backward induction); having only two types of players: leaders and followers (to avoid keeping
track of scores of each player), stochastic play (to avoid modelling the decision to play or not
whenever an opportunity presents), teams of at most two members (to reduce the number of
value functions we need to write). Changing any of these assumptions would likely preserve
our results qualitatively but add much computational burden.
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5.2 Estimation and Model Fit

We estimate the model using a full-solution method. To compute the equilibrium of the game,
we exploit that the state variables are directional (e.g., the maximum score or the number
of teams can only increase or stay the same) and that they are capped (e.g., the maximum
score and the number of teams cannot exceed s̄ and N/2, respectively). This allows us to
compute the equilibrium by backward induction.

The full set of primitives for a given contest include i) the probability that an active player can
play, λ1; ii) the probability that an active solo player can form a team, λ2; iii) the functions
qteam(s) and qsp(s), which indicate the probability of advancing the maximum score given that
the current maximum score is s for a team and a solo player, respectively; iv) the probability
of team failure, 1− γ; v) the probability that the contest ends, µ; and vi) the distribution of
team-formation costs, K(c;σ) = cσ, where σ > 0 and the support of the distribution is the
interval [0, 1].24 We allow these primitives to vary at the contest level.

We use a two-step procedure to estimate the primitives of each contest. In the first step, we
estimate primitives i)-v) without using the full structure of the model. In the second step,
we use the estimates of these primitives to estimate the cost distribution using a generalized
method of moments (GMM) estimator.

We specify the functions qθ(s), where θ ∈ {team, sp} as

qθ(s) = exp{βθ0 + β1s}/(1 + exp{βθ0 + β1s}),

and we estimate βθ0 and β1 using a maximum-likelihood estimator, using data on whether
each submission increased the maximum score as well as the maximum score at the time of
each submission (s). Because in some competitions the maximum score is rather constant,
we pool the data from all competitions to gain power in estimating the parameter β1, which
we constrain to be uniform across contests. We allow βθ0 to vary across contests.

We also estimate directly from the data the probability that at any given period a player
plays, λ1, and the probability that a team fails, 1− γ. We set µ = 1

T
, so in expectation the

contest duration matches the length of the contest in the data. We also set the probability
that a player can form a team, λ2, to be 1− λ1.25

24We normalize the size of the prize to be 1 for every contest.
25Both λ2 and the cost of making a merger impact the equilibrium number of mergers. We set λ2 = 1−λ1

to avoid an identification problem caused by the interplay between λ2 and the cost of making mergers in
explaining the observed number of mergers.
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In the second step, we estimate the parameter σ of the cost distribution, K(c;σ) = cσ, where
σ > 0. We use a GMM estimator, where for each contest k, we estimate σ by minimizing the
difference between the number of teams observed in the data and predicted by the model:
mk(σ) = teamsdatak − teamsmodelk . The GMM estimator for σ in contest k is then given by

σ̂ = arg min
σ

m̂k(σ)2.

We present asymptotic standard errors.

We use the full-solution method to compute the moment mk(σ) for a given value of σ. That
is, for a given σ, we compute the equilibrium of the game using backward induction to
obtain the matrices of conditional-choice probabilities (CCPs) governing the decision to form
teams, p. p is of dimensions S × N3 (S is the size of the set of possible scores and N is
the number of players that can be solo players, team players, or failed-team players) where
element (s, nsp, na, nf) of p is pjt,n.26 Using the CCPs, we simulate equilibrium outcomes by
simulating the game ns = 500 times and averaging equilibrium outcomes across simulations.

Lastly, we restrict the sample to the top 40 players in each contest (measured by the rank-
ing of players at the end of the competition), i.e., N = 40. We make this choice for two
reasons: First, these players are more likely to form teams. Second, this group of players
is less heterogeneous than the entire pool of players, which allows us to abstract away from
modelling player heterogeneity. We also restrict attention to the 80 contests that exhibited
team formation among the top 40 players.

Model Estimates and Fit Table 6 shows the model estimates and Figure 4 the fit of the
model. Panels A and B of Figure 4 show that the model is able to replicate well both the
number of submissions and the number of teams in a contest. Panel C shows that, while the
model tends to under-estimate the maximum score, especially for those with large maximum
score, the correlation between the data and model predictions is still high (about 78 percent).

Figure A.2 in the Online Appendix shows the distribution of the average cost of forming a
team across contests. On average, the mean cost of forming a team is 52 percent of the prize.
Given that team members split the prize in two in case of winning, only a few players find
forming a team worth it (i.e., those who get a particularly good draw of the cost of forming
a team). This explains the rather puzzling finding that only a few players form teams even
though there are performance gains.

26In the estimation, S varies across contests. In a given contest, the set of scores is set to include all unique
maximum scores in the competition as well as the values s̄ + [0.001 : 0.001 : 0.08], where s̄ is the highest
observed score in the competition.
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Table 6: Empirical model estimates

Panel A: Common parameters across contests
Estimate SE

γ 0.74 0.01
β1 (q) -1.486 0.035
βteams0 − βsp0 (q) 1.161 0.064

Panel B: Contest-specific parameters (partial list of contests)
λ1 SE σ SE βsp0 (q) SE N

TGS Salt Identification Challenge 0.082 0.008 1.4 0.207 -1 0.205 95
Quick, Draw! Doodle Recognition Challenge 0.072 0.007 1.54 0.363 -2.783 0.183 91
RSNA Pneumonia Detection Challenge 0.191 0.016 1.275 0.313 -3.429 0.387 94
Human Protein Atlas Image Classification 0.159 0.012 1.394 0.222 -3.235 0.286 118
Traveling Santa 2018 - Prime Paths 0.071 0.006 1.772 0.762 -1.321 0.212 103
Google Cloud & NCAA ML Competition 2019-Mens 0.12 0.011 1.09 0.086 -1.768 0.25 92
Instant Gratification 0.158 0.014 1.318 0.271 -2.411 0.351 93
Predicting Molecular Properties 0.109 0.009 1.351 0.171 -2.226 0.209 114
SIIM-ACR Pneumothorax Segmentation 0.138 0.014 1.044 0.139 -2.966 0.511 68
Lyft 3D Object Detection for Autonomous Vehicles 0.138 0.011 1.693 0.621 -2.299 0.182 126
Santas Workshop Tour 2019 0.066 0.008 1.149 0.113 -2.925 0.273 67
Predict HIV Progression 0.08 0.008 1.381 0.179 -0.932 0.203 87
Chess ratings - Elo versus the Rest of the World 0.18 0.013 1.271 0.223 -2.072 0.263 136
Tourism Forecasting Part One 0.29 0.023 1.302 0.656 -2.005 0.323 80
Tourism Forecasting Part Two 0.103 0.009 1.309 0.374 -5.346 0.216 108
R Package Recommendation Engine 0.096 0.008 1.264 0.124 -3.4 0.185 112

Notes: SE stands for asymptotic standard errors. See Table A.8 in the Online Appendix for the estimates of
the full list of contests.

6 The Equilibrium Impact of Teamwork

In this section, we ask two questions. First, we study the impact of teamwork on contest
outcomes. Second, we investigate the impact of competition and team-formation costs on
team-formation incentives and contest outcomes. To answer these questions, we use our
model estimates to compute the equilibria of each contest under counterfactual scenarios.

6.1 Equilibrium Effects of Teamwork

First, most Kaggle competitions allow teamwork but some do not. Why would an online-
contest platform, such as Kaggle, allow teamwork? Other online-contest platforms never
allow teamwork, nor do some online contests directly sponsored by government agencies. As
discussed in Section 4, teamwork creates a tradeoff. On the one hand, we provide evidence
suggesting that teamwork causes performance gains among successful teams. On the other
hand, some teams fail in that they stop making submissions. Hence, an evaluation of the
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Figure 4: Model fit, by equilibrium outcome
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Notes: The figures plot equilibrium outcomes in the data against those predicted by the model estimates.
Model predictions are computed via simulation. Specifically, we simulate the game ns = 500 times and
compute the average for each equilibrium outcome across simulations.

impact of teamwork must compare the benefit of having higher-performing players in the
competition (i.e., teams that succeed) against the cost of fewer submissions (i.e., the missed
submissions by the members of failed teams).

To shed light on this question, Table 7 reports a comparison between the equilibrium where
teamwork is allowed and the equilibrium where teamwork is forbidden for each contest in
our sample. Column 1 shows that allowing teamwork on average decreases the number of
submissions. As discussed, this is explained by team failures. Despite the fewer submissions
overall, Column 2 shows that teamwork on average increases the maximum score. The reason
for the increase is due to productivity gains by successful teams, which more than compensate
the reduction in number of submissions caused by failed teams. That is, teamwork causes an
improvement in the best submission in a contest.
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Table 7: Equilibrium impact of allowing teamwork

(1) (2)
Number of

submissions (in logs) Maximum score
Teamwork Allowed -0.036∗∗∗ 0.019∗∗∗

(0.002) (0.003)
Observations 160 160
R2 0.99 0.99

Notes: Standard errors clustered at the competition-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
An observation is a competition–treatment combination, where treatment ∈ {no teamwork, teamwork}. All
specifications include competition fixed effects.

6.2 Incentives I: The Role of Competition

Next, we investigate the impact of competition on team formation and contest outcomes.
Does greater competitive pressure encourage teamwork? Increasing the length of a contest
is one way to capture an increase in competitive pressure. In our model, this is equivalent to
reducing the probability that the contest ends at any given period (i.e., reducing µ). A longer
contest gives each player more chances to play but it also creates more future competition
(i.e., more opportunities for followers to displace the leader).

We take every contest in our sample and compute the equilibrium of the game for coun-
terfactual values of the expected length of the contest. Figure 5 presents the results of the
analysis. The figures shows that more competition encourages teamwork. Part of this effect
is mechanic because in a longer contest there are more opportunities to form teams. To focus
on the change in number of teams caused by incentives and not from the fact that the contest
is longer, Figure 5 (Panel B) shows the percentage change in the number of teams per pe-
riod, i.e., (number of teams)/(contest length). The figure shows that, after controlling for the
contest length, the number of teams increases (at least for small increases in competition).
This suggests that teamwork is more valuable when players expect more future competition.

Figure 5 (Panel C) shows that the number of submissions increases when the length of the
competition increases. More teams mean that more teams will fail but the teams that do not
fail have more time to send submissions. The rate of team failure is lower than the increase
in the number of submissions due to a longer contest duration, so the number of submissions
increases. Figure 5 (Panel D) shows that the two effects combined (more teams sending more
submissions) imply that the maximum score also increases.
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Figure 5: Equilibrium outcomes with increased competition levels
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Notes: The figures plot equilibrium outcomes predicted by the model estimates (as well as 95 per-
cent confidence bands) when the expected contest length increases by X percent in each contest (X ∈
{10, 20, 30, 40, 50}). Model predictions are computed via simulation. Specifically, we simulate the game
ns = 500 times and compute the average for each equilibrium outcome across simulations.

These results indicate that competition impacts the incentives to form teams. Players want
to form teams to increase their productivity because they are less likely to win by working
solo. On the flip side, reducing competition reduces the incentive to work in teams because
there will be fewer submissions, so a less productive solo player stands a good chance of
winning the contest. While forming a team increases a player’s productivity, it also splits the
prize in case of winning. Therefore, our results suggest that players will prefer to compete
solo in less competitive contests.
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6.3 Incentives II: The Cost of Team Formation

Next, we explore whether a contest platform should make an effort to facilitate the formation
of teams. For instance, allowing players to communicate, to access other player’s profiles,
or incorporating online-collaboration tools may facilitate teamwork by reducing the cost of
forming a team.

To investigate the impact of facilitating teamwork, we take every contest in our sample and
compute the equilibrium of the game if the average cost of forming a team decreased by a
value ranging between 10 percent and 50 percent. The theoretical impact of reducing the
cost of team formation on contest outcomes is ambiguous. On the one hand, when team
formation is less costly, more teams will form. This implies that high-scoring submissions
will be more likely to arise, as teams improve their performance relative to solo players, which
is the main finding in Section 4. On the other hand, a fraction of team fails, leaving fewer
competitors making submissions, reducing the number of submissions.

Figure 6 presents our results showing that making team formation less costly increases the
number of teams (panel A), reduces the number of submissions (panel B) due to failed
teams, and has a positive impact on the maximum score. That is, even though the number
of submissions decreases the maximum score increases. In other words, the performance
improvement that we identify in Section 4, more than compensates for the reduction in the
number of submissions due to failed teams.

How to lower the cost of team formation? Before forming teams, players need to
assess the value of collaboration, especially considering that 8.4 percent of all teams fail.
Naturally, players will try to screen potential partners before forming a team. Because
screening potential team members is costly, facilitating this task is one way to decrease the
cost of team formation.

One way to screen partners is using the leaderboard to look at other players’ performance
in the current competition or past ones.27 While the leaderboard is informative about the
performance of potential teammates, the public score is only a noisy signal of the private score
(i.e., the payoff-relevant performance measure). We find evidence suggesting that the noise
in the leaderboard makes screening costlier. Specifically, we exploit variation in the precision
of the public score as a signal of the private score across contests to measure the impact

27Figure A.3 in the Online Appendix shows that teams usually form among players who are performing
similarly at the time of the merger (measured in distance to the leaderboard maximum score) and that the
effect is stronger for players in top leaderboard positions. Figure A.4 in the Online Appendix shows a similar
result based on performance in past competitions.
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Figure 6: Equilibrium outcomes with reduced costs of team formation
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Notes: The figures plot equilibrium outcomes predicted by the model estimates (as well as 95 percent
confidence bands) when the expected cost of forming a team decreases by X percent in each contest
(X ∈ {10, 20, 30, 40, 50}). Model predictions are computed via simulation. Specifically, we simulate the
game ns = 500 times and compute the average for each equilibrium outcome across simulations.

of asymmetric information on team formation. Table A.9 in the Online Appendix shows
that both the number of submissions prior to team formation and the time of the merger
decrease with the precision of the information in the leaderboard. We interpret this finding
as indicating the informativeness of more precise signals: when information is more precise,
fewer signals are needed to form a more precise posterior belief about the type of a potential
teammate, which leads to earlier team formation. These findings suggest that players face
asymmetric information when forming teams, which suggests that contest platforms should
make the leaderboard as informative as possible, and more broadly, make it easier for players
to gather information about potential partners to facilitate team formation.
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7 Discussion

We investigate teamwork in contests. Why do teams form? What are the benefits of team-
work? Our reduced-form evidence suggest that teamwork causes an economically significant
performance improvement (for both high- and low-ranked teams). These performance gains
do not come from more quantity but rather from higher quality submissions. We also show
that not all teams are successful, which implies that players must compare the uncertain
benefits of teamwork with the cost of forming a team.

Motivated by these results, we build and estimate a structural model to shed light on the
players’ dynamic incentives to form teams during a contest. Our estimates show that forming
a team is quite costly: the average cost of forming a team equals 52 percent of the contest
prize. This high cost explains why collaboration is rather scarce in our sample of Kaggle
contests, since only 8 percent of participants are part of a team.

Using our estimates, we investigate alternative policies to derive contest-design implications.
Should contests allow the formation of self-organized teams? We answer this question by
studying the impact of facilitating teamwork (reducing the cost of team formation). We find
that the lower the cost of team formation, the higher the maximum score in a contest. This
result is not obvious since players will form more teams when team formation is cheaper,
meaning that more players will be idle for the rest of the competition, after their team
fails (recall that 8.4 percent of teams do not produce submissions). However, successful
partnership produce better outcomes, which counter the negative effect of failed teams. We
find that the former effect outweighs the latter, leading to an overall enhanced performance.
Thus, one implication for contest design from our analysis is that contests should allow
the formation of self-organized teams. Similarly, we find that lowering the cost of team
formation enhances contest outcomes, as it induces more team formation, leading to higher
scores despite a decrease in the number of submissions due to team failure. We propose
policies that a contest designer can implement to decrease the cost of forming a team.
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A Additional Tables and Figures

Figure A.1: Timing of team mergers: Cumulative probability function
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Notes: An observation is a team that welcomed a new member during the competition.

Table A.1: Probability of a failed team: OLS estimates

(1)
failed

Difference in submissions (in st. dev.) 0.034∗∗∗
(0.006)

Difference in max score (in st. dev.) 0.112∗∗∗
(0.006)

Observations 7,578
R2 0.425

Notes: Robust standard errors in parentheses. An observation is a team. The regression includes competition
fixed effects. Difference in submissions (max score) is the difference in the number of submissions (max score)
at the time of team formation, which are normalized to have standard deviation 1.
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Table A.2: Balance table: pre-merger covariates across treated and non-treated (matched) teams

Distance to max score
Number of submissions on public leaderboard Team size at
up to time of merger at time of merger time of merger

(1) (2) (3)
Non-treated teams 15.955 1.446 1
Treated teams 15.955 1.447 1
p-value 1.000 0.978 1.000

Notes: Treated teams are teams who welcomed a new member during the competition, non-treated teams
are teams who did not change their team size during the competition. The last row of the table reports the
p-value of a differences-in-mean test.

Figure A.2: Average cost of team formation.
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Figure A.3: Team member heterogeneity at the time of the merger
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Notes: The figure plots the distance of each team member to the leader at the moment of forming a team.
These figures restrict attention to teams in which both members had submitted at least 5 submissions prior
to the merger.
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Table A.3: The impact of collaboration on scores: Team-level estimates, competitive teams sub-
sample

Public score Private score
(1) (2)

Teamwork 0.075∗∗∗ 0.084∗∗∗
(0.016) (0.018)

Observations 2,008,287 2,008,287
R2 0.302 0.308

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. The sample is restricted to competitive teams,
which are defined as teams that obtained scores above the 75th percentile of the score distribution in their
competition. All specifications include team fixed effects, competition–day fixed effects, and a second-degree
polynomial of variables: total number of submissions by all teams up until the submission time, total number
of submissions by the team making the submission up until the submission time, total number of submissions
by the member of the team making the submission up until the submission time, the submitting team’s
distance to the maximum score on the public leaderboard at the submission time, and the fraction of contest
time that had elapsed at the submission time. The sample is restricted to include submissions by treated
teams that took place six weeks before or after the week in which the team changed its team size, and it also
restricts attention to teams with one or two members.
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Table A.4: The impact of collaboration on scores: Team-level estimates, heterogeneity analysis
with respect to contest characteristics

(1) (2) (3) (4) (5)
Panel A. Dependent variable: Public score
New member 0.078∗∗∗ 0.086∗∗∗ 0.073∗∗∗ 0.038 0.080∗∗∗

(0.014) (0.018) (0.021) (0.044) (0.015)

Teamwork * Image data -0.023
(0.026)

Teamwork * Large reward 0.012
(0.026)

Teamwork * Post 2015 0.044
(0.047)

Teamwork* Large dataset -0.011
(0.032)

Observations 3,248,210 3,248,210 3,248,210 3,248,210 3,248,210
R2 0.439 0.439 0.439 0.439 0.439

Panel B. Dependent variable: Private score
New member 0.085∗∗∗ 0.088∗∗∗ 0.077∗∗∗ 0.041 0.083∗∗∗

(0.016) (0.019) (0.021) (0.045) (0.018)

Teamwork * Image data -0.009
(0.036)

Teamwork * Large reward 0.019
(0.031)

Teamwork * Post 2015 0.047
(0.048)

Teamwork * Large dataset 0.012
(0.038)

Observations 3,179,632 3,179,632 3,179,632 3,179,632 3,179,632
R2 0.448 0.448 0.448 0.448 0.448

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. All specifications include team fixed effects,
competition–day fixed effects, and a second-degree polynomial of variables: total number of submissions by
all teams up until the submission time, total number of submissions by the team making the submission up
until the submission time, total number of submissions by the member of the team making the submission up
until the submission time, the submitting team’s distance to the maximum score on the public leaderboard
at the submission time, and the fraction of contest time that had elapsed at the submission time. The sample
is restricted to include submissions by treated teams that took place six weeks before or after the week in
which the team changed its team size, and it also restricts attention to teams with one or two members.
Image data is an indicator for whether the contest requires use of video or image data; large reward is an
indicator for contests with above average reward quantity; post 2015 is an indicator for contests taking place
after 2015 (when the platform incorporated new features that facilitated communication among players, e.g.,
notebooks); and large dataset is an indicator for whether the dataset has an above average size (in GBs).v



Table A.5: The impact of collaboration on extreme scores: Team-level estimates

1{score > p75} 1{score > p90} 1{score > p95} 1{score > p99}
(1) (2) (3) (4)

Panel A: Public score
Teamwork 0.074∗∗∗ 0.084∗∗∗ 0.070∗∗∗ 0.023∗∗∗

(0.008) (0.009) (0.009) (0.005)
Observations 3,248,210 3,248,210 3,248,210 3,248,210
R2 0.564 0.570 0.633 0.836

Panel B: Private score
New member 0.067∗∗∗ 0.077∗∗∗ 0.066∗∗∗ 0.023∗∗∗

(0.008) (0.009) (0.009) (0.005)
Observations 3,179,632 3,179,632 3,179,632 3,179,632
R2 0.541 0.454 0.433 0.453

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. 1{score > pX} is an indicator that takes
the value one if the submission’s score exceeded percentile X of the competition-level score distribution. All
specifications include team fixed effects, competition–day fixed effects, and a second-degree polynomial of
variables: total number of submissions by all teams up until the submission time, total number of submissions
by the team making the submission up until the submission time, total number of submissions by the member
of the team making the submission up until the submission time, the submitting team’s distance to the
maximum score on the public leaderboard at the submission time, and the fraction of contest time that had
elapsed at the submission time. The sample is restricted to include submissions by treated teams that took
place six weeks before or after the week in which the team changed its team size, and it also restricts attention
to teams with one or two members.

Table A.6: The impact of collaboration on scores: Team-level estimates, first-time collaborators
subsample

Public score Private score
(1) (2)

Teamwork 0.114∗∗∗ 0.121∗∗∗
(0.019) (0.023)

Observations 3,121,785 3,054,446
R2 0.444 0.453

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. All specifications include team fixed effects,
competition–day fixed effects, and a second-degree polynomial of variables: total number of submissions by
all teams up until the submission time, total number of submissions by the team making the submission up
until the submission time, total number of submissions by the member of the team making the submission up
until the submission time, the submitting team’s distance to the maximum score on the public leaderboard
at the submission time, and the fraction of contest time that had elapsed at the submission time. The sample
is restricted to include untreated teams and treated teams whose members are participating in a multiplayer
team for the first time (i.e., in all previous competitions, if any, they participated in a single-member team).
Further, the sample is restricted to include submissions by treated teams that took place six weeks before or
after the week in which the team changed its team size, and it also restricts attention to teams with one or
two members.
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Table A.7: The impact of collaboration on scores: Team-level estimates, heterogeneity analysis
with respect to time of team formation

Public score Private score
(1) (2)

Teamwork (early merger) 0.080∗∗∗ 0.081∗∗
(0.024) (0.035)

Teamwork (late merger) 0.078∗∗∗ 0.086∗∗∗
(0.017) (0.018)

Observations 3,248,210 3,179,632
R2 0.439 0.448

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. All specifications include team fixed effects,
competition–day fixed effects, and a second-degree polynomial of variables: total number of submissions by
all teams up until the submission time, total number of submissions by the team making the submission up
until the submission time, total number of submissions by the member of the team making the submission up
until the submission time, the submitting team’s distance to the maximum score on the public leaderboard
at the submission time, and the fraction of contest time that had elapsed at the submission time. The sample
is restricted to include submissions by treated teams that took place six weeks before or after the week in
which the team changed its team size, and it also restricts attention to teams with one or two members. An
early merger (late merger) is defined as a merger that took place when less (more) than 50 percent of the
contest time had elapsed.

vii



Table A.8: Empirical model estimates: Contest-specific parameters

λ1 SE σ SE β0 (q) SE N
TGS Salt Identification Challenge 0.082 0.008 1.4 0.207 -1 0.205 95
Quick, Draw! Doodle Recognition Challenge 0.072 0.007 1.54 0.363 -2.783 0.183 91
RSNA Pneumonia Detection Challenge 0.191 0.016 1.275 0.313 -3.429 0.387 94
Human Protein Atlas Image Classification 0.159 0.012 1.394 0.222 -3.235 0.286 118
Traveling Santa 2018 - Prime Paths 0.071 0.006 1.772 0.762 -1.321 0.212 103
Google Cloud & NCAA ML Competition 2019-Mens 0.12 0.011 1.09 0.086 -1.768 0.25 92
Instant Gratification 0.158 0.014 1.318 0.271 -2.411 0.351 93
Predicting Molecular Properties 0.109 0.009 1.351 0.171 -2.226 0.209 114
SIIM-ACR Pneumothorax Segmentation 0.138 0.014 1.044 0.139 -2.966 0.511 68
Lyft 3D Object Detection for Autonomous Vehicles 0.138 0.011 1.693 0.621 -2.299 0.182 126
Santas Workshop Tour 2019 0.066 0.008 1.149 0.113 -2.925 0.273 67
Predict HIV Progression 0.08 0.008 1.381 0.179 -0.932 0.203 87
Chess ratings - Elo versus the Rest of the World 0.18 0.013 1.271 0.223 -2.072 0.263 136
Tourism Forecasting Part One 0.29 0.023 1.302 0.656 -2.005 0.323 80
Tourism Forecasting Part Two 0.103 0.009 1.309 0.374 -5.346 0.216 108
R Package Recommendation Engine 0.096 0.008 1.264 0.124 -3.4 0.185 112
IJCNN Social Network Challenge 0.045 0.005 1.27 0.108 -0.867 0.282 68
Stay Alert! The Ford Challenge 0.101 0.008 1.27 0.124 -3.546 0.278 125
Mapping Dark Matter 0.61 0.019 1 0.035 -2.613 0.243 161
ICDAR 2011 - Arabic Writer Identification 0.103 0.009 0.981 0.084 -3.179 0.242 99
Dont Overfit! 0.041 0.006 1.472 0.706 -3.09 0.238 50
Wikipedias Participation Challenge 0.092 0.008 1.1 0.09 -4.962 0.201 101
Allstate Claim Prediction Challenge 0.222 0.014 1.119 0.157 -3.84 0.236 160
dunnhumbys Shopper Challenge 0.082 0.007 1.557 0.274 -1.718 0.165 118
Semi-Supervised Feature Learning 0.167 0.013 1.402 0.395 -2.524 0.208 122
Give Me Some Credit 0.093 0.009 1.034 0.081 -3.526 0.254 83
Dont Get Kicked! 0.308 0.018 1 0.005 -2.68 0.152 133
CHALEARN Gesture Challenge 0.114 0.01 0.984 0.052 -4.217 0.192 112
What Do You Know? 0.134 0.013 0.868 0.074 -4.739 0.289 79
Photo Quality Prediction 0.201 0.013 0.917 0.053 -3.268 0.237 142
The Hewlett Foundation: Automated Essay Scoring 0.097 0.01 1.118 0.083 -3.774 0.196 80
KDD Cup 2012, Track 2 0.088 0.011 1.211 0.333 -2.731 0.172 57
Predicting a Biological Response 0.24 0.014 1.367 0.19 -3.614 0.166 170
Online Product Sales 0.208 0.014 1.034 0.069 -3.187 0.208 137
Belkin Energy Disaggregation Competition 0.067 0.006 1.03 0.045 -5.004 0.194 101
Merck Molecular Activity Challenge 0.257 0.015 0.943 0.032 -3.978 0.2 173
Predict Closed Questions on Stack Overflow 0.155 0.014 0.72 0.03 -1.989 0.153 82
Traveling Santa Problem 0.069 0.009 1.2 0.259 -3.543 0.371 53
Blue Book for Bulldozers 0.265 0.014 0.712 0.018 -5.867 0.18 197
Job Salary Prediction 0.114 0.009 1.09 0.086 -1.818 0.208 115
The Marinexplore and Cornell University Whale Detection Challenge 0.164 0.012 0.751 0.028 -5.453 0.177 124
KDD Cup 2013 - Author-Paper Identification Challenge (Track 1) 0.25 0.015 0.744 0.032 -5.164 0.165 159
KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 0.163 0.012 0.782 0.031 -4.987 0.171 129
See Click Predict Fix 0.194 0.012 0.849 0.036 -3.729 0.266 161
Packing Santas Sleigh 0.063 0.006 1.243 0.086 -1.672 0.432 97
Higgs Boson Machine Learning Challenge 0.211 0.017 0.716 0.046 -3.164 0.127 96
Liberty Mutual Group - Fire Peril Loss Cost 0.077 0.008 1.054 0.084 -3.763 0.458 84
Helping Santas Helpers 0.106 0.01 1.228 0.602 -6.125 0.179 95
March Machine Learning Mania 2015 0.106 0.008 1.035 0.059 -4.746 0.157 125
Otto Group Product Classification Challenge 0.117 0.011 0.982 0.117 -5.4 0.143 86
ICDM 2015: Drawbridge Cross-Device Connections 0.28 0.015 1.008 0.065 -4.4 0.19 188
Caterpillar Tube Pricing 0.085 0.008 1.193 0.173 -4.071 0.22 93
Liberty Mutual Group: Property Inspection Prediction 0.12 0.011 1.398 0.408 -2.781 0.323 85
Springleaf Marketing Response 0.289 0.016 0.94 0.075 -4.547 0.149 170
Truly Native? 0.19 0.014 0.796 0.039 -4.999 0.152 128
The Allen AI Science Challenge 0.079 0.007 1.286 0.142 -3.238 0.196 99
Santas Stolen Sleigh 0.036 0.004 1 0.006 -4.432 0.36 64
Second Annual Data Science Bowl 0.113 0.009 1.154 0.169 -1.028 0.165 111
BNP Paribas Cardif Claims Management 0.1 0.009 1.046 0.052 -2.872 0.191 109
Home Depot Product Search Relevance 0.102 0.01 0.9 0.064 -6.12 0.191 86
Santander Customer Satisfaction 0.103 0.009 0.923 0.056 -5.988 0.181 114
Expedia Hotel Recommendations 0.117 0.009 1.156 0.075 -2.798 0.185 148
Ultrasound Nerve Segmentation 0.196 0.018 0.793 0.073 -4.249 0.247 73
Draper Satellite Image Chronology 0.083 0.012 1 0.016 -4.151 0.395 41
Predicting Red Hat Business Value 0.11 0.013 1.192 1.145 -4.838 0.718 53
TalkingData Mobile User Demographics 0.111 0.011 1.07 0.067 -1.961 0.218 77
Outbrain Click Prediction 0.176 0.014 1.537 0.571 -0.616 0.341 108
The Nature Conservancy Fisheries Monitoring 0.128 0.009 0.919 0.034 -4.135 0.204 164
Dstl Satellite Imagery Feature Detection 0.07 0.007 1.241 0.19 -2.788 0.241 76
Cdiscounts Image Classification Challenge 0.128 0.009 0.816 0.041 -5.158 0.169 141
Recruit Restaurant Visitor Forecasting 0.145 0.011 0.911 0.069 -4.742 0.199 120
Statoil/C-CORE Iceberg Classifier Challenge 0.09 0.01 1.123 0.118 -1.046 0.403 70
TrackML Particle Tracking Challenge 0.076 0.007 1.424 0.264 -3.937 0.157 90
Santa Gift Matching Challenge 0.121 0.012 0.888 0.046 -4.131 0.14 74
Google Cloud & NCAA ML Competition 2018-Mens 0.077 0.01 1.124 0.206 -4.599 0.329 50
Google Cloud & NCAA ML Competition 2018-Womens 0.27 0.019 0.65 0.037 -5.805 0.169 110
Google AI Open Images - Object Detection Track 0.06 0.007 1 0.043 -5.158 0.166 66
Google AI Open Images - Visual Relationship Track 0.095 0.009 1 0.009 -4.168 0.379 82
Airbus Ship Detection Challenge 0.089 0.01 1.007 0.077 -1.485 0.205 65
Peking University/Baidu - Autonomous Driving 0.121 0.013 0.607 0.027 -5.692 0.265 71

Notes: SE stands for asymptotic standard errors.
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Figure A.4: Are players matching up with players who have similar observed outcomes?

A) Number of kernels uploaded in the past B) Number of votes earned by kernels

C) Number of past messages on D) Number of past participations
the discussion board in the top 30

Notes: An observation is a multiplayer team. Panel A plots the number of kernels (also known as notebooks)
posted by the team members in the past. Kernels are code that players can post so that any user can make
use of it. Panel B plots the number of votes earned by the kernels posted by the different team members.
Panel C plots the number of discussion board messages posted by the team members in the past. Panel D
plots the number of past participations where the team members finished in the top 30 positions.
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Table A.9: The impact of performance feedback noise on team formation outcomes: Player-level
estimates

Number of submissions Time of
prior to team formation (in logs) team formation (in logs)

(1) (2)
Feedback precision (in St. Dev.) -0.037∗∗ -0.062∗∗∗

(0.016) (0.018)
Observations 4,410 4,410
R2 0.201 0.043

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a competition–player combination over the sample of team players. “Feedback precision” is a measure in
[0,100] readily available in the data. When it is 100, the public and private scores take the same value; when
it is 0, the public score is uncorrelated with the private score (see Section 2). We standardize it to simplify
the interpretation of our results (the mean and standard deviation before standardizing are 31.6 and 23.4,
respectively). All specifications include contest-level controls (i.e., total reward quantity, number of prizes,
maximum daily submissions, contest length, dataset size, image data indicator) and player-level controls (i.e.,
public score of first submission, number of past competitions). Column 1 further controls for the time of the
team’s formation, where time is the fraction of the contest time elapsed at the time of team formation.
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B Kaggle Users Interviews

To complement our analysis, we informally interview some Kaggle participants with teamwork
experience to inquire about team formation, asking them: “How concerned are you that your
teammate will not be a good match?” We reproduce verbatim answers below, which align
with our findings on screening potential teammates.

“In general, teamwork on kaggle works the following way: At the beginning of
the competition everybody participates alone. A few weeks before the end of the
competition, you look for somebody close to you on a leaderboard and team up
with them. You share your solutions, discuss all the ideas, and decide what to do
next. Sometimes everybody brainstorms and works on the new ideas together,
sometimes everybody continues to improve their solutions, and then combine
them.”

“I just want to team up with someone smart who I’ll enjoy collaborating with.
If they’ve done well in other competitions, that’s good enough. If they are doing
well in the same competition, it could be do to noise.”

“I would team up with a person only if I am very sure that I will learn something
from that person. I would check that person LinkedIn profile and would also have
conversations with that person over call before teaming up. LinkedIn and their
previous kaggle work can serve as good indicator. Also during the call, I ask them
what have they done so far in the competition. I decide based on the answers
which they give to this question”

“previous experience at kaggle, posts in the current competition, and the current
results. Also it is very important if I already participated in another competition
with the person. So I know the capabilities of the person, and how hard he/she
can work.”
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C Derivation of Value Functions of Structural Model

In this section, we provide further details about the value functions of the different types of
players in the structural model.

Team, Leader. The interim value of a player that is a member of the team leading the
competition (denoted team i) is

Lteam
s,n = µLteam

end + (1− µ)
[
ψ(n)Lteam

s,n + 2λ1

N
Lteam,own
s,n + 2(na − 1)

N
λ1L

team,rival team
s,n

+n
sp

N
λ1L

team,rival sp
s,n + nsp

N
λ2L

team, team forms
s,n

]

In this expression, with probability µ, the contest ends and team i receives continuation
value Lteam

end . If the contest does not end, which occurs with probability 1 − µ, there are 5
cases. (1) With probability ψ(n), none of the active players is selected to make a submission
and none of the solo players can choose to form a team and each member of team i receives
Lteam
s,n . (2) With probability 2λ1/N , one of the members of team i is selected to make a

submission, and each member of team i receives Lteam,own
s,n . (3) With probability 2(na−1)

N
λ1,

one of the players in a rival team is selected to make a submission, and each member of team
i receives Lteam,rival team

s,n . (4) With probability nsp

N
λ1, one of the solo players is selected to

make a submission, and each member of team i receives Lteam,rival sp
s,n . Lastly, with probability

nsp

N
λ2, one of the solo players can choose to form a team, and each member of team i receives

Lteam, team forms
s,n . The expressions for these values are given by

ψ(n) = (1− λ1 − λ2 + 2λ1n
f/N + 2λ2(na + nf)/N),

Lteam,own
s,n = qteam(s)Lteam

s′,n + (1− qteam(s))Lteam
s,n ,

Lteam,rival team
s,n = qteam(s)F team

s′,n + (1− qteam(s))Lteam
s,n ,

Lteam,rival sp
s,n = qsp(s)F team

s′,n + (1− qsp(s))Lteam
s,n ,

Lteam, team forms
s,n = ps,n[γLteam

s,(nsp−2,na+1,nf) + (1− γ)Lteam
s,(nsp−2,na,nf+1)] + (1− ps,n)Lteam

s,n ,

where ps,n is the conditional probability that a solo player decides to form a team, which
is the equilibrium object given by Equation 4. In Lteam, team forms

s,n , with probability γ the
composition of teams and solo players changes: there will be one more team and two fewer
solo players. With probability 1− γ, two solo players become “inactive” and the number of
failed teams increase by one. The last term, (1 − ps,n)Lteam

s,n , corresponds to the case where
a solo player can form a team but chooses not to do so. In these expressions, whenever a
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player makes a submission, the player becomes the leader of the competition with probability
qteam(s) if the player is in a team, and with probability qsp(s) if the player is a solo player.

Team, Follower. The interim value of a follower team is

F team
s,n = (1− µ)

[
ψ(n)F team

s,n + 2λ1

N
F team,own
s,n + 2(na − 1)

N
λ1F

team,rival team
s,n

+n
sp

N
λ1F

team,rival sp
s,n + nsp

N
λ2F

team, team forms
s,n

]

When the contest does not end, there are 5 cases analogous to the cases for a team leading
the competition. The expressions for these values are given by

ψ(n) = (1− λ1 − λ2 + 2λ1n
f/N + 2λ2(na + nf)/N),

F team,own
s,n = qteam(s)Lteam

s′,n + (1− qteam(s))F team
s,n ,

F team,rival team
s,n = qteam(s)F team

s′,n + (1− qteam(s))F team
s,n ,

F team,rival sp
s,n = qsp(s)F team

s′,n + (1− qsp(s))F team
s,n ,

F team, team forms
s,n = ps,n[γF team

s,(nsp−2,na+1,nf) + (1− γ)F team
s,(nsp−2,na,nf+1)] + (1− ps,n)F team

s,n ,

Solo Player, Leader. The interim value of a solo player who leads the competition is

Lsp
s,n = µLsp

end + (1− µ)
[
(ψ(n) + λ2/N)Lsp

s,n + λ1

N
Lsp,own
s,n + 2na

N
λ1L

sp,rival team
s,n

+(nsp − 1)
N

λ1L
sp,rival sp
s,n + (nsp − 1)

N
λ2L

sp, team forms
s,n

]

Again, when the contest does not end, there are 5 cases analogous to the cases for a team
leading the competition. The expressions for these values are given by

ψ(n) = (1− λ1 − λ2 + 2λ1n
f/N + 2λ2(na + nf)/N),

Lsp,own
s,n = qteam(s)Lsp

s′,n + (1− qteam(s))Lsp
s,n,

Lsp,rival team
s,n = qteam(s)F sp

s′,n + (1− qteam(s))Lsp
s,n,

Lsp,rival sp
s,n = qsp(s)F sp

s′,n + (1− qsp(s))Lsp
s,n,

Lsp, team forms
s,n = ps,n[γLsp

s,(nsp−2,na+1,nf) + (1− γ)Lsp
s,(nsp−2,na,nf+1)] + (1− ps,n)Lsp

s,n,
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