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Abstract

We study self-organized teams in dynamic contests. Using data from Kaggle, we

document that teams outperform solo players, but few players choose to form teams.

Every new team alters the composition of players, discouraging less productive solo

players to make submissions. We estimate the structural parameters of a dynamic

contest model, including the team formation and submission costs. We find that team

formation incentives diminish with the number of teams, as do the incentives to make

submissions. We empirically evaluate the productivity-discouragement tradeoff caused

by teamwork and discuss implications for contest design, including facilitating team-

work and hosting open competitions.
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1 Introduction

Over the last decade, contests sponsored by firms and government agencies have attracted

thousands of participants competing for large monetary prizes. Designers of these contests

faces many choices, such as the structure of prizes, the length of the contest, and what infor-

mation to display on a leaderboard, among others. However, one aspect that deserves more

attention is giving players a choice to form self-organized teams. Although the formation of

a team may improve the performance of its members, it may also discourage other players

during the competition: it increases the share of high-performing competitors.

To explore this tradeoff, we empirically investigate team formation in dynamic contests and

derive practical implications for contest design. Specifically, our framework allows us to

shed light on questions such as: Do self-organized teams perform better than solo players?

Why and when do self-organized teams form in a dynamic contest? What are the equilib-

rium effects of team formation on other competitors’ incentives to make submissions and

form teams? From the perspective of a contest designer, what conditions make teamwork

desirable? These insights inform the design and management of contests.

Our contribution is to address these questions by combining policy evaluation techniques

with a novel structural model of team formation in dynamic contests. We present three key

findings. First, we document that, on average, self-organized teams outperform solo players.

Second, we introduce a structural model of team formation. In the model, players compare

the marginal benefit of teamwork (which evolves with the state of the competition) against

the cost of team formation. The type of competitor (team or solo player) and the state

of the competition impact players’ incentives to make submissions and form teams. Third,

we use our structural estimates to explore team formation incentives, equilibrium effects of

teamwork, and implications for contest design, including the impact of reducing the cost of

team formation and limiting entry.
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Our empirical setting is Kaggle, the largest platform for online data science competitions,

where players create algorithms to predict outcomes based on covariates.1 Our sample in-

cludes 131 featured competitions offering at least $5,000 in prizes, typically lasting sev-

eral months and attracting thousands of participants who can make multiple submissions.2

Kaggle competitions provide an ideal setting to investigate the effect of teamwork on per-

formance. First, they offer detailed information about the timing and performance of every

submission in a competition, the identity of the player making each submission, the timing of

team formation, and the composition of each team. This allow us to reconstruct the real-time

public leaderboard and the composition of competitors (teams or solo players) throughout

each competition. Second, players must make at least one submission before forming a team,

enabling us to compare individual performance before and after team formation.

Our first contribution is to investigate the benefits of teamwork for members of self-organized

teams in dynamic contests, which remains unexplored. Using a differences-in-differences

design, we exploit the timing of team formation to compare the performance of players who

form a team with those who work solo (and never form a team) before and after the team

forms. In the estimation, we use the full sample and a subsample that matches a team with

a similar solo player on observable covariates up to the point of team formation.

Our estimates show that, after team formation, self-organized teams score 0.048 to 0.06

standard deviations higher than solo players, comparable to the gap between 1st and 40th

place. Teams perform similarly to solo players before formation, but significantly better im-

mediately after, with gains persisting long-term. Moreover, these performance gains persist

over time and positively impact final standings, although not for every team.

We use a similar research design to study whether self-organized teams submit more sub-
1www.kaggle.com. For instance, the ride-sharing company Lyft is hosting a competition where partici-

pants need to predict the movement of traffic agents around an autonomous vehicle.
2Featured competitions are “full-scale machine learning challenges which pose difficult, generally

commercially-purposed prediction problems.”
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missions than solo players. We find that players in self-organized teams do not send more

submissions than solo players. These findings indicate that teams and solo players are not

the same “type” of competitors. On average, teams produce higher-quality submissions and

do not increase the quantity of submissions relative to solo player.

Armed with the finding that players can improve their “type” by forming self-organized

teams, our second contribution is to introduce a structural model of team formation in dy-

namic contests. In our model, players get random opportunities to form teams or make

submissions. Players form teams to become more productive but are discourage by prize

sharing (in the event of winning) and team formation costs. Players also decide whether

to make submissions by paying a submission cost. Teams and solo players have different

probabilities of becoming the competition leader after making a submission. These prob-

abilities decrease for both types of competitors as the maximum score increases, reflecting

that progress is easier at the beginning of the competition and becomes increasingly harder.

We estimate the model’s primitives, including the distribution of team formation and sub-

mission costs. The (unconditional) average cost of forming a team across all contests in our

data is 40 percent of the contest’s prize. While these costs are heterogeneous across players,

most players find it too costly to form a team, even knowing their performance will improve.

Next, we explore incentives to form teams and the dynamic equilibrium effects of teamwork.

First, we study the probability of forming a team. We find that all else equal, players are

discouraged from forming teams when they compete against more teams. This is intuitive

because the benefit of forming a team is to improve the chances of winning the competition.

As players compete against more teams (which are “higher types”), this benefit decreases,

so players’ incentives to form teams fall. We also find that all else is equal, the marginal

benefit of forming a team falls with time. This occurs because players have fewer chances to

seize the benefits of teamwork when there is less time remaining in the competition.
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We then use our structural model’s estimates to study the impact of teamwork on the

number of submissions. As the number of teams increases, all else equal, the probability of

submitting falls. This result supports the idea that players experience discouragement when

facing stronger opponents (see, e.g., Brown, 2011). When fixing all other state variables,

players have stronger incentives to submit when they are closer to the end of the competition.

Intuitively, as time runs out, players anticipate that whoever gets to lead the competition at

the current time will likely win.

Our third contribution is to shed light on whether a contest designer should facilitate team-

work by making team formation less costly.3 On the one hand, more teams will form if it

is cheaper to do so, which generates high-scoring submissions as teamwork improves perfor-

mance relative to working solo. On the other hand, the more teams, the lower a player’s

incentive to form a team or make a submission. To empirically compare these countervailing

forces, we simulate contests with lower team formation costs. In the equilibria of these con-

tests we find more teams, fewer submissions, and higher maximum scores. In other words,

the benefit of facilitating teamwork outweighs the cost. As a corollary, forbidding team

formation is detrimental for a contest designer seeking to procure a submission with a high

score. However, teamwork may be detrimental for a content designer who cares about the

number of submissions (e.g., to procure diverse solutions).

Lastly, we use our structural model’s estimates to investigate the impact of competitive

pressure on team formation. All the competitions in our data are open to anyone who

wishes to participate. However, some competitions (even in Kaggle) restrict the number of

participants. We find that the absolute number of teams increases with the number of players,

but the relative number of teams decreases. That is, for every additional player added to the

contest, fewer than one team forms. Additionally, as the number of teams grows, the number
3In practice, a contest designer could facilitate team formation by allowing players to communicate,

providing easy access to other players’ profiles (e.g., history of achievements), or incorporating online-
collaboration tools. Any of these initiatives would likely reduce the cost of forming teams.
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of submissions and the maximum score also rise, even though the individual incentives to

make submissions fall. These results suggest that contest designers should strive to attract

as many players as possible.

Our results suggest that some contest sponsors may need to consider the potential benefits of

facilitating teamwork. This is a low-cost intervention that can enhance the value of contests.

Related Literature. Our paper broadly relates to the recent literature on dynamic con-

tests design, including Bhattacharya (2021), Lemus and Marshall (2021), Lemus and Mar-

shall (2024), Benkert and Letina (2020), and Gross (2017), among others. We show that

allowing self-organized teams improves performance in contests, which contributes to the

broader literature on teamwork and performance (see, e.g., Hamilton et al., 2003; Jones,

2009; Ahmadpoor and Jones, 2019).

Members of self-organized teams can benefit from exploiting their comparative advantages

(Büyükboyacı and Robbett, 2017; Büyükboyaci and Robbett, 2019), knowledge diversity (Li-

Calzi and Surucu, 2012), or avoiding biases, cognitive limitations, and social considerations

(see, e.g., Cooper and Kagel, 2005; Sutter et al., 2013; Müller and Tan, 2013; Feri et al.,

2010). Girotra et al. (2010) find that teams perform better when members first work inde-

pendently. In our setting, players must work independently before teaming up. Although we

do not observe internal team dynamics, our Online Appendix documents that team members

generally have comparable performance histories.

Regarding team size, we find that two- and three-member teams represent 84 percent of all

teams, and larger teams do not necessarily perform better. Wu et al. (2019) uses academic

papers, patents, and software products to show that smaller teams produce more disruptive

research, whereas larger teams expand on the existing knowledge. Ahmadpoor and Jones

(2019) find that teamwork has a greater impact than solo work. Azoulay et al. (2010) and

Jaravel et al. (2018) show that the premature death of high-skilled team members worsens
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the future performance of the remaining team members.

Some articles have also provided descriptive evidence of teamwork in Kaggle competitions.

For example, Wang et al. (2019) discuss repeated participation in Kaggle competitions.

Dissanayake et al. (2019) find that team members with similar characteristics are common,

but diverse teams perform better. Dissanayake et al. (2015) also note that less diverse teams

can perform better when most members are highly skilled. None of these papers structurally

estimate a dynamic model of team formation.

2 Background and Data

2.1 Kaggle Competitions

Kaggle is an online platform that hosts data science competitions. Participants use data from

a contest’s sponsor to build algorithms to predict some variables of interest. For example,

Google Cloud sponsored a competition to assign labels to videos.4

Participants in a Kaggle competition have access to two datasets. The first one, the training

dataset, includes both an outcome variable and covariates, and the participants use it to

build and train their algorithms. The second one, the test dataset, includes covariates only.

Competitors have to submit outcome-variable predictions for each observation in the test

dataset. The test dataset is split into two subsets for out-of-sample performance evaluation

without revealing which subset an observation belongs to. A submission’s performance

on the first subset, the public score, is instantly posted on a public leaderboard, whereas

its performance on the second subset, the private score, is made public at the end of the

competition only and is used to determine the winner.5 Public and private scores are highly
4https://www.kaggle.com/competitions/youtube8m
5The evaluation criterion for the out-of-sample performance of a submission varies across contests. Ex-

amples of evaluation criteria include the root mean squared error or R2.
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correlated (the correlation is 0.99 in our sample), so public scores are informative but noisy

performance signals.

Competitors can make multiple submissions throughout the competition, subject to a cap

on daily submissions. They are also free to form teams subject to four restrictions. First, a

player must have made at least one submission before forming a team. Second, the cumula-

tive number of submissions by all team members before the date of team formation cannot

exceed the maximum number of allowed submissions per day times the number of days

the competition has been running. Third, teams must form before a competition-specific

deadline. Fourth, teams cannot disband.

2.2 Data and Descriptive Evidence

We use publicly available information on 131 Kaggle competitions awarding a monetary prize

of at least $5,000.6 An observation in our dataset is a submission in a contest. We observe

each submission’s timestamp, an identifier for the player (or team) who made it, and its

public and private scores. We also observe team formation dates. These data allow us to

track the competitors’ composition (solo players or teams) and performance throughout the

competition.

Table 1 reports competition-level summary statistics. The table shows that the competitions

in our sample offer, on average, a monetary prize of $54,699 (USD), with some competitions

offering as much as $1,200,000. The competitions attract thousands of participants who

make multiple submissions: On average, 1,781 players made at least one submission, and

the competitions received 27,922 submissions. Although in all our competitions players

can self-organize into teams, most choose to participate as solo players: over 90 percent of

competitors are solo players.
6https://www.kaggle.com/kaggle/meta-kaggle
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[Insert Table 1 about here]

Table 2 presents the distribution of team size across competitions. Panel A includes the

full sample of competitors and shows that 90.18 percent are solo players and 5.55 are two-

member teams. Panel B restricts attention to competitors that finish in the top 40 and shows

that only 66.74 percent are solo players, whereas 15.19 percent are two-member teams. This

evidence shows that teamwork is more prevalent when we look at competitors that rank at

the top of the leaderboard.

Figure 1 shows the share of competitors across contests by ranking at the end of the competi-

tion. The figure reveals that competitors ranked higher are likelier to be teams. For instance,

a team won about 60 percent of the competitions, whereas in only about 20 percent of the

competitions, a team placed 40th. Thus, top competitors are far more likely to be teams

than solo players.

[Insert Table 2 about here] [Insert Figure 1 about here]

All this evidence suggests that self-organized teams perform better than solo players, but

relatively few teams form. To understand the mechanisms behind these facts, we first mea-

sure the gains from participating in a team, and then we measure how costly it is to form

a team. In Sections 3 and 4, we explore whether there is a positive relationship between

teamwork and performance. In Section 5, we propose and estimate a model to uncover the

cost of team formation. In Sections 6 and 7, we investigate the players’ dynamic incentives

to form teams and use our findings to discuss implications for contest design.
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3 Empirical Strategy

To measure the performance of self-organized teams, we compare the performance of team

members and solo players before and after a team forms. An advantage of Kaggle’s data

is that players must submit at least one submission before forming a team.7 Thus, we can

track a player’s performance before and after a team forms.

Our main estimating equation is

yi,j,c,t = β · 1{post team formation}i,j,c,t + h(xi,j,c,t, δ) + µj,c + λc,t + εi,j,c,t, (1)

where yi,j,c,t is an outcome variable of submission i (e.g., a submission i’s score) by competitor

j (a unique solo player or team) in competition c at time t, 1{post team formation}i,j,c,t is

an indicator that takes the value one if competitor j is a team at time t, xi,j,c,t is a vector

of time-varying competitor-level state variables, such as the competitor’s distance to the

competition leader at time t.8 The term h(·, δ) is a quadratic function of the state variables,

µj,c are competitor–competition fixed effects, λc,t are competition–time fixed effects, and

εi,j,c,t is an error term clustered at the competitor level.9

We also estimate a version of Equation 1 that allows for time-varying effects,

yi,j,c,t =
6∑

τ=−6
βτ ·1{τ weeks before/after team formation}i,j,c,t+h(xi,j,c,t, δ)+µj,c+λc,t+εi,j,c,t,

(2)

where β−τ and βτ , for τ = 1, ..., 6 capture, respectively, the performance of a competitor τ

weeks before and τ weeks after the team forms.10

7In our sample, on average, players submit 19 submissions before forming a team.
8We define ‘distance’ as the difference between the competitor’s score at time t and the maximum score.
9In our analysis, all the submissions of all members of team j have the same competitor identifier,

even those that are submitted before the team forms. The µj,c fixed effects then do not “change” for the
individuals who form a team after team formation occurs. The effect of team formation will be captured by
the coefficient β that multiplies the indicator for team formation.

10β−1 is normalized to zero. β0 captures the effect of teamwork at the week of the team formation.
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The coefficient β in Equation 1 captures the performance of self-organized teams relative to

solo players, and the coefficients βτ from Equation 2 capture this effect over time. In making

this comparison, we note that if teamwork creates performance gains, solo players (untreated

individuals) may become discouraged from facing stronger opponents. This means untreated

players may be indirectly affected by teamwork. We note, however, that this discouragement

will only exist if teamwork improves the performance of teams, implying that a positive and

significant β coefficient should reflect some degree of performance gains from teamwork, even

if solo players are discouraged, making the empirical exercise informative about the impacts

of teamwork.

Estimation Methods. We employ two estimation methods. The first one uses the full

sample of solo players and two-member teams.11 This method amounts to a differences-in-

differences design where we control for observable variables and fixed effects.

The second estimation method is like the first but uses matching to alleviate the concern

that team members (treated units) and solo players (control units) differ in observable char-

acteristics. We have 6,064 teams matched with solo players of similar characteristics at the

time of the team formation. Specifically, for team j, we compute two variables: i) number

of submissions by all team members at the time of the team formation and ii) distance to

the maximum score at the time of the team formation. The solo player closest to team j on

these two dimensions is team j’s matched solo player.12 Table A.1 in the Online Appendix

presents a balance analysis for our matching procedure.13

Lastly, we note that the coefficient β in Equation 1 (respectively, βτ in Equation 2) measures

the performance of self-organized teams relative to solo players, which is the comparison we

focus on this paper. These coefficients do not necessarily measure the causal impact of
11We exclude larger teams to avoid issues related to multiple treatments during the competition (i.e.,

competitors that change types multiple times).
12The metric for distance is

(
submissions solo player−submissions team

submissions team

)2
+
(

score solo player−score team
score team

)2
.

13Figure A.1 presents a balance analysis for variables that were untargeted in the matching procedure.
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teamwork in general, precisely because players self-select into teams in our setting. It is

plausible that players choose to form teams when they privately observe their potential

gains from teamwork. Appendix C provides an additional estimation method to control for

selection using a two-step, Heckman-style selection bias correction (Heckman, 1979) similar

to the one used by Lee (1978). The evidence in Appendix C suggests a possible causal effect

of teamwork on performance. That is, even if teams were not self-organized, teamwork could

enhance performance.

4 The Impact of Teamwork on Performance

4.1 Scores

We begin by measuring the impact of teamwork on scores. To facilitate comparison across

competitions, we standardize the scores at the competition level (i.e., mean 0 and standard

deviation 1) and transform them so that higher scores indicate better performance.14

[Insert Table 3 about here]

Table 3 presents estimates for Equation 1 using the public score as the dependent variable,

y.15 The estimates show that, on average, self-organized teams perform better than solo

players. Specifically, on average, team scores are 0.06 and 0.048 standard deviations higher

than solo players’ scores in the full and matched samples. How large are these magnitudes?

The median score difference between the contest winner and the player who finishes in the

40th position is about 0.05, suggesting that teams perform substantially better than solo

players.
14Lower or higher scores can be “better,” depending on the contest’s evaluation metric. For instance, when

the metric is RSME, lower scores are better, whereas higher scores are better for the metric R2.
15We present results using the private score in the Online Appendix.
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Figure 2 presents our estimates for Equation 2. We compare the weekly performance of teams

and solo players from six weeks before the team formation until six weeks after. We use the

full sample of solo players and two-member teams in the first column; we restrict the analysis

to the matched sample in column 2. Figure 2 shows that, before the actual team formation,

scores of players who form teams and solo players (who never form a team) are statistically

indistinguishable. After the team formation, team members perform significantly better

than solo players. Performance improvement manifests immediately after the team forms

and plateaus around three weeks after formation.

[Insert Figure 2 about here]

4.2 Number of submissions

To study the impact of teamwork on the number of submissions, we estimate a version

of Equation 1 where the dependent variable, y, corresponds to the number of submissions

by each competitor in every week of the competition. In the analysis, an observation is a

competitor–week–competition combination.

The first column of Table 4 presents the estimates for Equation 1, using the number of

submissions as the endogenous variable for the full sample of competitors. The estimate

shows that, on average, teams send 1.626 fewer submissions than solo players. The second

column presents estimates for Equation 1 using the subsample of all the teams and their

respective solo-player match. The estimates for the matched sample are similar, although

the magnitude of the effect is just 0.964 fewer submissions on average.
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4.3 Heterogeneity Analysis

We investigate how the ranking and number of submissions compare for teams and solo

players at the end of the competition. Figure 3 shows the distribution of the difference

between these variables at the end of the competition for both teams and matched solo

players. The figure shows the heterogeneous benefits of teamwork, with many negative

values, highlighting teamwork’s uncertain returns. Panel A shows the distribution of ranking

difference; despite the heterogeneous effect, on average, teams rank 40 positions ahead of

their matched solo players. Panel B shows that treated teams, on average, decrease their

number of submissions by 153 percent. These results suggest that, on average, teamwork

decreases the volume of submissions but increases the quality of submissions.

[Insert Table 4 about here] [Insert Figure 3 about here]

Figure A.2, in the Online Appendix, shows the distribution of the time of team formation.

It is roughly uniform right before the team-formation deadline (which varies across compe-

titions), with a spike in team formation right at the deadline. Table A.2 shows that teams

that form later send more submissions relative to solo players. However, the time of team

formation has no impact on final rankings.

As a robustness check, we also explore whether team performance is heterogeneous across

different types of contests. Table A.3, in the Online Appendix, shows that the performance

gains of teamwork are not statistically different in different types of contests (e.g., contests

where players must analyze image data, contests with larger rewards, or contests with larger

datasets).
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4.4 Implications for Contest Design

The implications of these results for contest design depend on the competition sponsor’s

preferences. Allowing teamwork has the potential to deliver better results because teams

perform better than solo players. On the other hand, teams send fewer submissions than

solo players, which can reduce the diversity of approaches.16

The ideal experiment to determine the impact of allowing self-organized teams on outcomes

would need to compare two identical contests, except for one allowing teamwork and the

other banning it. Our data does not permit such comparison for two reasons. First, all the

contests in our data allow players to form teams. Second, each contest is ‘unique,’ i.e., the

problem, the reward, and the competition dates are uniquely defined for each contest.

In the next section, we develop a structural model to explore the dynamic incentives to form

teams. The model will help us answer questions related to contest design, including the

impact of banning teamwork on contest outcomes.

5 Equilibrium Effects of Teamwork

In this section, we present a dynamic model of team formation where players consider the

following economic trade-offs. On the one hand, team formation increases the likelihood of

becoming the competition leader. On the other hand, forming a team is costly, and players

must share the prize in the case of winning. Players compare the marginal change in their

continuation value from forming a team, minus the cost of team formation, against the value

of not forming a team and continuing as solo players.

Players can also make a submission by paying a submission cost. They evaluate the value

of potentially becoming the competition leader by making a submission versus its cost. The
16Our model abstracts away from diversity, as we do not explicitly model approaches.
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current competition’s maximum score, the time left in the competition, and the composition

of competitors (teams versus solo players) impact a player’s incentives to form a team and

make a submission.

We estimate key structural parameters of our model and use them to shed light on players’

equilibrium behavior. In particular, we explore dynamic incentives to make submissions and

form teams, answering questions such as: Are players discouraged from making submissions

when there are more teams? Are players more likely to team up when they compete against

more teams? How do players’ incentives to form teams and submit evolve over time?

We then use our estimates to simulate alternative contest designs and study the impact of

these designs on contest outcomes.

5.1 Empirical Model

There are N forward-looking players competing in a contest. Time is discrete, t = 0, ..., T ,

and payoffs are undiscounted.17 Players can make submissions and form teams during the

contest. There are two possible types of competitors, θ ∈ {team, sp}, where ‘team’ denotes a

2-member team and ‘sp’ denotes a solo player.18 A player’s type can transition only from sp

to team, i.e., teams cannot disband. At every period, there is a unique competition leader,

and everyone else is a follower. A public leaderboard displays, in real-time, the current

maximum score, s, and the leader’s identity. At the end of the contest, the leader receives a

prize π = 1, and followers get 0; If a team wins, its members split the prize evenly.19

17Payoffs are undiscounted; the average competition duration in our sample is 77 days.
18This assumption simplifies the model. Empirically, 62.43 percent of multi-player teams are composed of

two members.
19We make this assumption based on Kaggle’s rules: “If a Team wins a monetary Prize, the Prize money

will be allocated in even shares between the eligible Team members, unless the Team unanimously opts for
a different Prize split and notifies Kaggle before Prizes are issued.”
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The state space is:

S = {(s, ℓ, nteam, t) : s = s1, s2, ..., s̄; ℓ = 0, 1; nteam = 0, ..., N/2; t = 0, .., T.},

where s is the maximum score, ℓ indicates whether the leader is a solo player (ℓ = 0) or a

team (ℓ = 1), nteam is the number of teams, and t is the competition time. We denote the

distribution of types by n ≡ (nsp, nteam), where nsp is the number of solo players. We assume

that the total number of players is constant throughout the contest, so nsp + 2nteam = N .

Although nsp is determined by nteam, for notational convenience we use (s, ℓ, n, t) as the

state. Players publicly observe the state before making decisions. At the beginning of the

contest, there are no teams, so the initial state is (0, 0, (N, 0), 0).

A player’s type and current position determine one of four possible scenarios: the player is

either (1) a solo-player follower, (2) a team-member follower, (3) a team-member leader, or

(4) a solo-player leader. The terminal values for each case are, respectively,

F sp
s,ℓ,n,T = F team

s,ℓ,n,T = 0, Lteam
s,ℓ,n,T = π

2 , and Lsp
s,ℓ,n,T = π. (3)

Two independent and mutually exclusive events can occur for t < T .20 In the first event,

which occurs with probability λ1, a randomly selected player decides whether to make a

submission, after observing the cost of making a submission, csub, which is a draw from the

distribution Ksub.21 A submission from a player of type θ increases the current maximum

score, s, with probability qθ(s), and it does not increase it with probability 1 − qθ(s). The

function qθ(·) is decreasing (i.e., the higher s, the harder to increase s). Thus, the direct
20The assumption that no more than one decision can take place at time t is reasonable given that each

time period is short (in our empirical application, for most contests, a period is 9 hours). Our model
can be viewed as an approximation to a continuous time model where the probability of more than one
decision at any instant of time is approximately zero (see, e.g., Lemus and Marshall (2021)). Because this
assumption can lead to equilibrium uniqueness, essentially because each player solves a single-agent problem
when making their decisions, other papers have made similar modeling choices (see, e.g., Igami (2017)).

21We assume this distribution is type-independent to avoid identification issues since we added hetero-
geneity in the probability of success.
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benefit of teamwork is to transition from type ‘sp’ to the more productive type ‘team,’

reflected in qsp(s) < qteam(s) for all s.

In the second event, which occurs with probability λ2, one of the solo-players followers can

form a team; a solo player leading the competition is assumed to never form a team.22 A solo-

player follower choosing to form a team can always do so provided that nsp ≥ 2 (i.e., at least

two solo players are available). The direct cost of forming a team is cteam, a random draw

from the distribution Kteam. We assume that only the player proposing to form a team bears

this cost.23 Given that incentives are symmetric for every solo-player follower, whenever one

of them benefits from transitioning from ‘sp’ to ‘team,’ including paying the team-formation

cost, any other solo-player follower who does not need to pay the team-formation cost also

benefits from transitioning from solo-player to team.

Solo Player, Follower. A solo-player follower’s value at state (s, ℓ, n = (nsp, nteam), t) is

F sp
s,ℓ,n,t = λ1

N
Ecsub

[
max{qsp(s)Lsp

s′,0,n,t′ + (1 − qsp(s))F sp
s,ℓ,n,t′ − csub, F sp

s,ℓ,n,t′}
]

+
λ2

N
Ecteam

[
max{F team

s,ℓ,(nsp−2,nteam+1),t′ − cteam, F sp
s,ℓ,n,t′}

]
+ E[V sp, F

s′,ℓ′,n′,t′ |(s, ℓ, n, t)]. (4)

This expression consists of three distinct terms, each with a specific interpretation. The first

term, multiplied by λ1/N , represents the payoff of the follower solo player when they can

make a submission. The second term, multiplied by λ2/N , denotes the follower solo player’s

payoff when they can form a team. The final term, E[V sp, F
s′,ℓ′,n′,t′ |(s, ℓ, n, t)], represents the

continuation payoff for the follower solo player when one of their rivals takes an action or

when no player can take an action in the current period. We now explain each one of these

terms in more detail.
22We make this assumption to simplify the model. Empirically, only 1.63 percent of teams form by a solo

player leading a competition.
23The assumption that team formation is costly is motivated by our discussions with Kaggle users, who

suggested that searching and screening potential team members is costly. See Online Appendix B for details.
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In the first term, with probability λ1
N

, a solo-player follower can choose to make a submission,

in which case, after paying the cost csub, the player becomes the leader with probability qsp(s),

receiving a continuation payoff of Lsp
s′,0,n,t′ . With probability 1 − qsp(s), the player fails to

become the leader, receiving F sp
s,ℓ,n,t′ , which equals the payoff of not making a submission.

Conditional on having the opportunity to make a submission, the probability that a solo-

player follower makes a submission is

psp,F
s,ℓ,n,t = Pr(csub < qsp(s)(Lsp

s′,0,n,t′ − F sp
s,ℓ,n,t′)). (5)

The solo player compares the marginal benefit and cost of making a submission; see the

comparison inside the first maximum operator in (4). The marginal benefit is given by

qsp(s)(Lsp
s′,0,n,t′ −F sp

s,ℓ,n,t′), reflecting that with probability qsp(s) the player becomes the leader

and the maximum score increases, thus receiving Lsp
s′,0,n,t′ instead of F sp

s,ℓ,n,t′ . The marginal

cost is simply csub.

Next, with probability λ2
N

, a solo-player follower can choose to form a team with another

solo-player follower, after paying the cost cteam. If the team forms, the composition of types

in the contest changes: it transitions from n = (nsp, nteam) to n′ = (nsp − 2, nteam + 1), and

the team members receive the continuation value F team
s,ℓ,(nsp−2,nteam+1),t′ . If, instead of forming

a team, the solo-player decides to continue working solo, the player receives F sp
s,ℓ,n,t′ .

Conditional on having the opportunity to form a team, the probability that a solo-player

follower forms a team is

pteam forms
s,ℓ,n,t = Pr(c < F team

s,ℓ,(nsp−2,nteam+1),t′ − F sp
s,ℓ,n,t′). (6)

A solo-player compares the marginal benefit and the marginal cost of forming a team; see the

comparison inside the second maximum operator in (4). The marginal benefit of transition

from type ‘sp’ to type ‘team’ corresponds to receiving the continuation value of a team
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follower instead of that of a solo-player follower, taking into account that forming a team

also changes the composition of types in the competition, i.e, F team
s,ℓ,(nsp−2,nteam+1),t′ − F sp

s,ℓ,n,t′ .

The marginal cost is simply cteam. An implicit cost of team formation, captured in the

continuation values, is that team members must split the prize in the event of winning the

competition.

Lastly, the term E[V sp, F
s′,ℓ′,n′,t′|(s, ℓ, n, t)] captures the impact of the actions of other players on

a solo-player follower’s continuation payoff. This includes cases where nobody can choose

to make a submission or form teams, as well as cases where rivals can make submissions or

form teams. For the sake of exposition, we derive this expression in the Online Appendix.

Other Players. There are three other cases: a team-member follower, a team-member

leader, and a solo-player leader. In these cases, teams do not form because the competitors

either are already a team or leading the competition (we ruled out solo-player leaders forming

teams by assumption, see footnote 22). Nevertheless, in all these situations the competitors

can choose to make submissions, and their interim payoffs change as the state variables

evolve.

The derivation of the value functions for these other cases parallels the logic used for a solo-

player follower. To avoid redundancy, we direct readers to the Online Appendix for detailed

descriptions of these equations.

Equilibrium. The solution concept we use is Markov perfect equilibrium. We solve the

game by backward induction, using the terminal values in equation (3) and working backward

to fully solve the model.
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5.2 Estimation and Model Fit

We estimate the model using a full-solution method. To compute the equilibrium of the

game, we exploit that the state variables are directional—the maximum score, the number of

teams, and time cannot decrease—and they are capped, s ∈ [s1, s̄], nteam ∈ [0, N ], ℓ ∈ {0, 1},

and t ∈ {1, . . . , T}. This allows us to compute the equilibrium by backward induction.

We set T = 360 for estimation. Each time period lasts for about 5 hours in a competition

that lasts 77 days, which is the average duration of a competition in our sample.

The full set of primitives for a given contest include i) the probability that an active player

can play, λ1; ii) the probability that an active solo player can form a team, λ2; ii) the

number of periods, T ; iv) the functions qteam(s) and qsp(s), which indicate the probability

of advancing the maximum score given that the current maximum score is s for a team and

a solo player, respectively; v) the distribution of team-formation and submission costs with

support in [0, 1], Kteam(c;σ) = cσteam and Ksubs(c;σ) = cσsubs , respectively, where σteam and

σsubs are positive numbers that can vary across contests.

We use a two-step procedure to estimate the primitives of each contest. In the first step, we

estimate iv) without using the full structure of the model, given values of λ1, λ2, and T .24 In

the second step, we use the estimates of these primitives to estimate the cost distributions

in v) using a generalized method of moments (GMM) estimator.

We specify the functions qθ(s), where θ ∈ {team, sp} as

qθ(s) = exp{βθ
0 + β1s}

1 + exp{βθ
0 + β1s}

.

24We do not estimate λ1 and λ2 due to their interaction with the submission and team formation costs,
which creates an identification problem when predicting the equilibrium number of submissions or teams.
Roughly, an increase in λ1 (more submission opportunities) can be counteracted by a decrease in average
submission cost, posing an identification problem. The same applies to λ2 and team formation cost. We set
λ1 = 0.25 and λ2 = 0.75, along with T = 360, to rationalize the data.
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We estimate βθ
0 and β1 by maximum-likelihood using data on whether each submission

increased the maximum score at the time of each submission, s. We allow βθ
0 to vary across

contests but we constraint β1 to be the same across competition. We pool the data from all

competitions to gain power in estimating β1 because in some competitions changes in the

maximum score are infrequent.

In the second step, we estimate the parameters σteam and σsubs of the team formation and

submission cost distributions, respectively. All else equal, higher submission and team for-

mation costs will decrease the equilibrium number of submissions and teams. We identify the

parameters of the cost distributions by matching the data and model predictions. Specifi-

cally, we use a GMM estimator for σ ≡ (σteam, σsubs) that minimizes the percentage difference

between the number of teams and submissions observed in the data and those predicted by

the model. The objective function is given by:

fk(σ) =
(

teamsdata
k − teamsmodel

k (σ)
teamsdata

k

)2

+
(

submissionsdata
k − submissionsmodel

k (σ)
submissionsdata

k

)2

.

We present asymptotic standard errors.

We use the full-solution method to compute fk(σ) for a given value of σ. That is, for a

given σ, we compute the equilibrium of the game using backward induction to obtain the

matrices of conditional-choice probabilities (CCPs) governing the decisions to form teams

pteam and make submissions, psubs,θ,leader and psubs,θ,follower. The dimension of these matrices

is S × N/2 × T × 2, where S is the size of the set of possible scores, N is the maximum

number of teams, T is the maximum number of periods, and 2 are the two possible types of

the leader (team or solo player).25 Using these CCPs, we simulate equilibrium outcomes by

simulating the game ns = 500 times and averaging equilibrium outcomes across simulations.
25In the estimation, S = 20. In a given contest, the set of scores includes all unique maximum scores in

the competition as well as the values s̄ + [0.002 : 0.002 : 0.04], where s̄ is the highest observed score in the
competition, and where the set of scores is constrained to be of size S = 20.
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Lastly, we restrict the sample to the top 40 players in each contest (measured by the ranking

of players at the end of the competition), i.e., N = 40. We make this choice for two

reasons: First, these players are more likely to form teams. Second, this group of players

is less heterogeneous than the entire pool of players, which allows us to abstract away from

modeling player heterogeneity. We restrict attention to the 68 contests with at least one

team among the top 40 competitors.

[Insert Table 5 about here] [Insert Figure 4 about here]

Model Estimates and Fit Table 5 shows the model estimates and Figure 4 the fit of the

model. Panels A and B of Figure 4 show that the model can replicate well both the number

of submissions and the number of teams in a contest. Panel C shows that, while the model

tends to underestimate the maximum score, especially for those with large maximum scores,

the data and model predictions are positively correlated.

Figure A.3 in the Online Appendix shows the distribution of the average cost of forming

a team across contests. On average, the mean cost of forming a team is 40 percent of the

prize.26 In addition, team members split the prize in two in case of winning.27 These facts

rationalize the rather puzzling finding that only a few players form teams even though there

are performance gains.
26Figure A.3 in the Online Appendix also shows that the average expected cost of forming a team across

contests is about $14,000. However, the average expected cost of forming a team, conditional on a player
choosing to form a team, is about $27. The difference between these expected values shows that an unusually
low-cost draw is needed for a team to form.

27Among team members, while the monetary prize is split in two, it is possible that non-monetary rewards
of winning a competition are not. If Lteam

s,ℓ,n,T = απ > 0.5π, and we use Lteam
s,ℓ,n,T = 0.5π for estimation, our

estimates of the cost distribution would be biased downwards. We abstract away from non-monetary rewards
in our model.
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6 Dynamic Equilibrium Effects of Teamwork

In this section, we study the dynamic equilibrium effects of teamwork. One of the key

economic forces in our framework is the endogenous evolution of the distribution of types.

As some competitors become stronger (i.e., two solo players form a team) other competitors

can get discouraged. Thus, team formation may worsen overall performance in the contest.

The literature has investigated the impact of player heterogeneity on outcomes for an exoge-

nous distribution of types. For instance, Brown (2011) finds that playing against a highly

skilled opponent may reduce effort. Drugov and Ryvkin (2022) show that, in general, this

prediction is theoretically ambiguous and provides analytical conditions that guarantee that

player heterogeneity causes discouragement. We expand this literature by empirically inves-

tigating the extent of discouragement in a setting where players’ dynamic decisions to form

teams determine the distribution of types.

Figure 5 presents four exercises that offer insights into the dynamic equilibrium effects of

team formation. Panels A and B explore the incentives to form teams, whereas Panels

C and D explore the incentives to make submissions. Panel A fixes the score, time, and

type of leader but varies the number of teams. The figure shows that the probability that

solo-follower players form teams decreases as they currently compete against more teams

(downward sloping lines). Moreover, this probability is lower when the current maximum

score is higher (dashed line below solid line). The intuition is straightforward. First, as the

number of teams increases, the return from teamwork diminishes because teams are stronger

competitors. Second, as the maximum score increases, the return from teamwork diminishes

because it is harder to become the competition leader, even for teams.

Panel B fixes the score, number of teams, and type of leader but varies the competition

time. The marginal benefit of forming a team falls as time goes on because players have
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fewer chances to exploit the benefits of teamwork.28 It also falls as the maximum score

increases because it is harder to become the competition leader.

Panel C fixes the score, time, and type of leader but varies the number of teams. The figure

shows that a player is less likely to make a submission when the number of teams or the

current maximum score increases. These results show that players experience discouragement

when facing more “higher ability” types (teams) or the current maximum score is higher.

Figure A.4 in the Online Appendix shows that solo-player followers are more discouraged

than team followers from making a submission when there are more teams.

Panel D fixes the score, number of teams, and type of leader but varies the competition

time. Close to the end of the competition, players’ incentives to make submissions increase

because as time runs out, they anticipate less “future competition,” i.e., whoever takes the

competition’s lead will likely win.

[Insert Figure 5 about here]

The economic mechanisms described in Figure 5 can be affected by additional forces, which

we do not model. For instance, players can procrastinate when deciding to form a team.

Also, not every player begins working on the contest at time 0; they enter over time. In

addition, players may use the information on the leaderboard to learn about their potential

partners and signal their quality (see Section 8 for more on this point). These additional

forces push players to delay team formation.

We also note that we are not incorporating two institutional details on team formation. The

first is that players must make at least one submission before forming a team, and the second

is that the team must form before a certain deadline.

Next, we use our structural model’s estimates to derive implications for contest design.
28Recall that, in our model, competitors have stochastic chances of making submissions.
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7 Contest Design Implications

7.1 Allowing Team Formation

Most, but not all, Kaggle competitions allow teamwork. Why would an online contest

platform, such as Kaggle, allow teamwork? As previously discussed in Sections 4 and 6,

teamwork creates a tradeoff. On the one hand, players working in teams can improve their

performance. On the other hand, they can discourage other players. Hence, an evaluation

of the impact of teamwork must compare the benefit of having higher-performing players in

the competition against the cost of fewer submissions.

Figure 6 shows that allowing teamwork can have heterogeneous effects across contests on the

number of submissions and maximum score. Panel A shows that submissions almost always

decrease when teamwork is allowed. Panel B shows that the maximum score decreases for

about 15 percent of the competitions, but it increases on average. We find that in 7 out

of 68 contests, teamwork reduces both the number of submissions and the maximum score,

so banning teamwork would be appropriate in these cases. Also, in 7 out of 68 contests,

teamwork increases both the number of submissions and the maximum score, so allowing

teamwork is appropriate. However, in 54 out of 68 contents, the contest designer faces a

tradeoff: allowing teamwork reduces the number of submissions but increases the maximum

score.29

[Insert Figure 6 about here]
29Boudreau and Lakhani (2011) findings suggest that there may be gains from letting players self-select

into contests that ban or permit teamwork.
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7.2 Open Contests versus Restricted Entry

Does greater competitive pressure encourage teamwork? To answer this question, we change

the number of players in a contest and recompute the equilibrium. Since the opportunities

to make submissions (or form teams) are stochastic, in the counterfactual equilibria we keep

the opportunities to play constant by adjusting the length of the contest, i.e., λ1T
N

= λ1T ′

N ′ .

Figure 7 presents the results of these counterfactual simulations. Panel A shows that more

players in a contest encourages teamwork. Forming a team is one way to “escape” the

competition by becoming a higher type. Thus, all else equal, the marginal return of teamwork

increases with the number of competitors. Panel B shows the percentage change in the share

of teams, that is, number of teams(N)
N

. The figure shows that this ratio decreases with N , meaning

that the numerator grows at a slower rate than the denominator. In other words, adding

one player increases the number of teams by less than one.

Panel C shows that the total number of submissions increases with the number of players.

Part of this effect is mechanical because there are more players in the competition. However,

more players potentially create more discouragement. Panel D shows precisely this effect:

the number of submissions per player decreases with the number of players in the contest.

That is, players experience discouragement from facing more competitors.

More players diminish individual incentives to form teams and make submissions. However,

there are more players in the contest, which can make up for lower individual incentives.

Figure 7, Panel E, shows that this is indeed the case: the maximum score increases with the

number of players.

[Insert Figure 7 about here]

These results indicate that more players at the outset increase the maximum score, even

after considering the equilibrium effects of more players on the number of submissions and
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team formation. Therefore, “open contests” (unrestricted entry) procure higher scores than

contests restricting entry to a limited number of players.30

7.3 Reducing the Cost of Team Formation

A binary choice of allowing or banning teamwork may be suboptimal. An intermediate cost

of team formation might achieve the best outcome. More teams form when team formation

is cheaper, increasing the likelihood of high-scoring submissions. However, some players may

experience discouragement from facing stronger rivals.

We explore whether a contest platform benefits from facilitating team formation. For in-

stance, allowing players to communicate, access other players’ profiles, or incorporate online

collaboration tools may reduce the cost of team formation, facilitating the organization of

teams.

Figure 8 presents simulated outcomes for contests with varying team-formation costs. Panel

A shows that making team formation less costly increases the number of teams, which is a

direct effect. Panel B shows that the lower the cost of team formation, the lower the number

of submissions, which is an indirect effect driven by discouragement. Panel C shows that,

even though the number of submissions decreases, the maximum score increases. In other

words, the performance improvement we identify in Section 4 more than compensates for

the negative impact of more teams on the number of submissions. These results highlight

the importance of reducing team-formation costs to improve contest outcomes.31

[Insert Figure 8 about here]
30Some Kaggle competitions restrict entry; see, e.g.,

https://www.kaggle.com/competitions/cervical-cancer-screening
31Boudreau et al. (2017) presents evidence suggesting that reducing matching frictions among scientists

can improve outcomes.
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8 Conclusion

We present evidence suggesting that, on average, self-organized teams perform significantly

better than solo players. Teams’ performance gains do not come from more quantity but

from higher quality submissions. However, our data reveals that only a few players select to

organize themselves into teams, which suggests potentially substantial costs associated with

teamwork (splitting the prize in the event of winning and paying a team-formation cost).

Motivated by these results, we build and estimate a structural model to shed light on the

players’ dynamic incentives to form teams during a contest. Our estimates show that forming

a team is quite costly: the average cost equals 40 percent of the contest prize. This high

cost explains why collaboration is relatively scarce in our sample of Kaggle contests (around

10 percent of the competitors are teams).

Using our estimates, we explore dynamic incentives to form teams and to make submis-

sions. Team formation discourages other competing players from forming teams and making

submissions. We then investigate alternative contest designs. Lowering the cost of team

formation increases a contest’s maximum score. This result arises from two opposing effects

of teamwork: more “high type” players emerge, but players are discouraged from submit-

ting and forming teams. We find that the former effect outweighs the latter, improving

overall performance. Our analysis suggests contest designers should allow and facilitate

self-organized team formation to benefit from these dynamics.

We also use our estimates to investigate how the number of players affects our results. We

show that more players discourages players to both form a team and make submissions.

However, the fact that there are more players makes up for this discouragement, leading to

higher maximum scores. This suggests that contest designers should consider “open contests”

rather than limiting the number of players.

Our model simplifies dynamic team formation for tractability. For instance, we only model
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the competition as one where there is one “leader,” and all the other competitors are “fol-

lowers.” A more flexible model would allow for many positions in the leaderboard and

incorporate asymmetric incentives to form teams with players in different positions on the

leaderboard. We leave these and other open questions for future research.
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Table 1: Competition-level summary statistics

Mean St. Dev. Min Max
(1) (2) (3) (4)

Number of submissions 27,922 33,376 627 159,810
Number of players 1,781 1,928 57 11,111
Number of competitors 1,676 1,818 55 10,450
Percentage of solo players 90.18 5.15 71.60 98.42
Reward quantity (USD) 54,699 136,093 5,000 1,200,000

Notes: The table reports summary statistics for 131 competitions. A competitor can be a solo player or a
multi-player team.
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Table 2: Percentage of competitors of different types across competitions

Number of members Mean St. Dev. Min Max
Panel A: All competitors
1 90.18 5.15 71.60 98.43
2 5.55 2.30 0.99 12.29
3 or more 4.15 3.28 0.00 17.84

Panel B: Top 40 competitors
1 66.74 15.62 22.50 100.00
2 15.19 6.66 0.00 35.00
3 or more 18.07 14.02 0.00 70.00

Notes: The table reports summary statistics for 131 competitions. Panel B considers only teams that finished
the competition within the first 40 positions.
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Figure 1: Share of multiplayer teams by final ranking
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Notes: An observation is a team that finished a competition in the top 40 positions of the final ranking.
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Table 3: The impact of collaboration on scores: Team-level estimates

Score
Full sample Matched sample

Team 0.060∗∗∗ 0.048∗∗∗

(0.009) (0.010)
Observations 3,189,817 432,121
R2 0.439 0.393

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission. All specifications include competitor–competition fixed effects, competition–day
fixed effects, and a second-degree polynomial of competitor-level state variables, including the time t, the
total number of submissions by all competitors up until t, the total number of submissions by the competitor
submitting up until t, and the submitting competitor’s distance to the leader at t. The sample is restricted
to include submissions by treated teams that took place six weeks before or after the week in which the team
changed its team size.
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Figure 2: The impact of teamwork on scores: competitor-level estimates
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Notes: Standard errors are clustered at the competitor level. The figures show the point estimate of βτ and
the 95-percent confidence intervals around the estimate. An observation is a submission. All specifications
include the same sample restrictions and sets of fixed effects and controls as the ones described in Table 3.
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Table 4: The impact of collaboration on the number of submissions: Team-level estimates

Number of submissions
Full sample Matched sample

Teams -1.626∗∗∗ -0.964∗∗∗

(0.162) (0.149)
Observations 1,282,028 96,452
R2 0.657 0.557

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
An observation is a competition–competitor–week combination. All specifications include competitor fixed
effects and competition–week fixed effects. The sample is restricted to include submissions that took place
in the first twelve weeks of a competition.
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Figure 3: The impact of teamwork on final outcomes: Matching estimates
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Table 5: Empirical model estimates

Panel A: Common parameters across contests
Estimate SE

β1 (q function) -1.4642 0.0348
βteams

0 − βsp
0 (q function) 1.3307 0.0354

Panel B: Contest-specific parameters (partial list of contests)
σteam SE σsub SE β0 (q) SE N

TGS Salt Identification Challenge 0.7372 0.0340 0.2990 0.0010 -2.5714 0.2513 54
Quick, Draw! Doodle Recognition Challenge 0.9881 0.0413 0.0424 0.0079 -0.7119 0.2063 77
RSNA Pneumonia Detection Challenge 0.9760 0.0821 0.0997 0.0070 -1.6698 0.2639 107
Human Protein Atlas Image Classification 0.9338 0.0757 0.1820 0.0023 -4.9669 0.2199 90
Traveling Santa 2018 - Prime Paths 0.8174 0.0308 0.1944 0.0036 -2.9767 0.1894 96
Google Cloud & NCAA ML Competition 2019-Mens 0.7624 0.0349 0.0886 0.0063 -0.7583 0.2883 59
Instant Gratification 0.8281 0.0378 0.1649 0.0026 -3.2192 0.2795 108
Predicting Molecular Properties 0.9808 0.0641 0.0781 0.0288 -2.2559 0.2445 138
SIIM-ACR Pneumothorax Segmentation 0.5469 0.0432 0.1763 0.0001 -2.6569 0.2443 96
Lyft 3D Object Detection for Autonomous Vehicles 0.9163 0.0317 0.3689 0.0021 -2.8153 0.2414 48

Notes: SE stands for asymptotic standard errors. See Table A.4 in the Online Appendix for the estimates
of the full list of contests.
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Figure 4: Model fit, by equilibrium outcome
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Notes: The figures plot equilibrium outcomes in the data against those predicted by the model estimates.
Model predictions are computed via simulation. Specifically, we simulate the game ns = 500 times and
compute the average for each equilibrium outcome across simulations. Bigger dots reflect more observations.
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Figure 5: Properties of conditional choice probabilities
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Notes: The figures plot equilibrium conditional choice probabilities computed using model estimates for one
contest: the “Don’t Get Kicked!” (Predict if a car purchased at auction is a lemon) contest. In Panels A
and C, time is fixed at t = 320, the leader is a follower ℓ = 0, and the score is either the second (low) or
tenth (high) value of the score grid. Panel C plots the probability of a submission for a follower team. In
Panels B and D, the number of teams is fixed at zero, the leader is a follower ℓ = 0, and the score is either
the second (low) or tenth (high) value of the score grid. Panel D plots the probability of a submission for a
follower solo player.
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Figure 6: Equilibrium impact of allowing teamwork on contest outcomes (teamwork vs no team-
work)
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Notes: The figures plot a comparison of equilibrium outcomes when allowing teamwork versus when teamwork
is banned. An observation is a contest.
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Figure 7: Equilibrium outcomes with increased competition levels
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Notes: The figures plot equilibrium outcomes predicted by the model estimates (as well as 95 per-
cent confidence bands) when the expected contest length increases by X percent in each contest (X ∈
{10, 20, 30, 40, 50}). Model predictions are computed via simulation. Specifically, we simulate the game
ns = 500 times and compute the average for each equilibrium outcome across simulations.
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Figure 8: Equilibrium outcomes with reduced costs of team formation
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Notes: The figures plot equilibrium outcomes predicted by the model estimates (as well as 95 percent
confidence bands) when the expected cost of forming a team decreases by X percent in each contest (X ∈
{10, 20, 30, 40, 50}). Model predictions are computed via simulation. Specifically, we simulate the game
ns = 500 times and compute the average for each equilibrium outcome across simulations.
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A Appendix: Value Functions Derivations

In this section, we derive the value functions for the remaining cases in the structural model.

Solo Player, Follower (Continuation).

The expected continuation value of a solo player follower when other players can make a
submission or form a team, or no other player has such an opportunity, is given by

E[V sp,F
s′,ℓ′,n′,t′|(s, ℓ, n, t)] = ψ(n)F sp

s,ℓ,n,t′ + 2nteamλ1

N
F sp,rival team

s,ℓ,n,t + (nsp − 1)λ1

N
F sp,rival sp

s,ℓ,n,t

+(nsp − 1)λ2

N
F sp, team forms

s,ℓ,n,t . (7)

The probability that nobody can make a submission or form a team is

ψ(n) = 1 − λ1 − λ2 + λ2
2nteam

N
, (8)

which is the complementary probability that someone can make a submission or form a team.

The continuation value for a follower-solo player, when a rival team can make a submission
is given by

F sp,rival team
s,ℓ,n,t = ℓ

nteam

[
pteam, L

s,1,n,t (qteam(s)F sp
s′,1,n,t′ + (1 − qteam(s))F sp

s,1,n,t′) + (1 − pteam, L
s,1,n,t )F sp

s,1,n,t′

]
+n

team − ℓ

nteam

[
pteam,F

s,ℓ,n,t (qteam(s)F sp
s′,1,n,t′ + (1 − qteam(s))F sp

s,ℓ,n,t′) + (1 − pteam,F
s,ℓ,n,t )F sp

s,ℓ,n,t′

]
. (9)

This event happens with probability 2nteamλ1/N—note that an individual team can make a
submission with probability 2λ1/N , so that team formation does not change the opportunities
for an individual player to make a submission whether part of a team or not. Given that the
competition leader and the followers do not have the same incentives to make a submission,
we distinguish the cases in which the rival team is the leader or a follower. Conditional that
a team is chosen, the competition leader is chosen to make a submission with probability
ℓ/nteam. In all these cases, a follower-solo player will continue as a follower-solo player, but
the score can increase, and a team can become (or remain if ℓ = 1) the competition leader.

Similarly, the continuation value for a follower-solo player, when another follower-solo player
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can make a submission is given by

F sp,rival sp
s,ℓ,n,t = 1 − ℓ

nsp − 1
[
psp,L

s,0,n,t(qsp(s)F sp
s′,0,n,t′ + (1 − qsp(s))F sp

s,0,n,t′) + (1 − psp,L
s,0,n,t)F sp

s,0,n,t′

]
+n

sp − 1 − (1 − ℓ)
nsp − 1

[
psp,F

s,ℓ,n,t(qsp(s)F sp
s′,0,n,t′ + (1 − qsp(s))F sp

s,ℓ,n,t′) + (1 − psp,F
s,ℓ,n,t)F

sp
s,ℓ,n,t′

]
,(10)

which is an event event that happens with probability (nsp − 1)λ1/N .

The probabilities of making a submission by player who is a follower-solo, leader-solo,
follower-team, or leader-team, are given, respectively, by

psp,F
s,ℓ,n,t = Pr(csub < qsp(s)(Lsp

s′,0,n,t′ − F sp
s,ℓ,n,t′)), (11)

psp,L
s,0,n,t = Pr(csub < qsp(s)(Lsp

s′,0,n,t′ − Lsp
s,0,n,t′)), (12)

pteam,F
s,ℓ,n,t = Pr(csub < qteam(s)(Lteam

s′,1,n,t′ − F team
s,ℓ,n,t′)), (13)

pteam, L
s,1,n,t = Pr(csub < qteam(s)(Lteam

s′,1,n,t′ − Lteam
s,1,n,t′)). (14)

Lastly, the value of a solo-follower player (i) when another solo-follower player (j) can form
a team is

F sp, team forms
s,ℓ,n,t =

(
(1 − pteam forms

s,ℓ,n,t )nsp − 2 + ℓ

nsp − 1 + 1 − ℓ

nsp − 1

)
F sp

s,ℓ,n,t′ +

+
(nsp − 2 + ℓ)pteam forms

s,ℓ,n,t

nsp − 1

( 1
nsp − 2 + ℓ

F team
s,ℓ,(nsp−2,nteam+1),t′ + nsp − 3 + ℓ

nsp − 2 + ℓ
F sp

s,ℓ,(nsp−2,nteam+1),t′

)
,

(15)

which is an event that happens with probability (nsp − 1)λ2/N . Player j chooses not to
form a team with probability 1 − pteam forms

s,ℓ,n,t , in which case player i receives F sp
s,ℓ,n,t′ , and

where pteam forms
s,ℓ,n is an equilibrium object that we derived above. With probability pteam forms

s,ℓ,n,t ,
player j chooses to form a team with one of the nsp − 1 − (1 − ℓ) solo players. Player
j picks player i with probability 1/(nsp − 1 − (1 − ℓ)) (i.e., every available solo player is
chosen with equal probability), and player i receives F team

s,ℓ,(nsp−2,nteam+1),t′ . With probability
(nsp−2−(1−ℓ))/(nsp−1−(1−ℓ)), player j forms a team with a solo player other than player
i. In this case, player i continues being a follower solo player, although the composition of
rival players has changed: there is one more team and two fewer solo players.

Team, Leader. The interim value of a player that is a member of the team leading the
competition (denoted team i) is

Lteam
s,1,n,t = 2λ1

N
Ecsub

[
max{qteam(s)Lteam

s′,1,n,t′ + (1 − qteam(s))Lteam
s,1,n − csub, Lteam

s,1,n,t′}
]

+ E[V team, L
s′,ℓ′,n′,t′ |(s, 1, n, t)].
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where

E[V team, L
s′,ℓ′,n′,t′|(s, ℓ, n, t)] = ψ(n)Lteam

s,1,n,t′ + 2(nteam − 1)
N

λ1L
team,rival team
s,1,n,t

nsp

N
λ1L

team,rival sp
s,1,n,t + nsp

N
λ2L

team, team forms
s,1,n,t (16)

Here, ℓ = 1, since the current competition leader is a team player. In this expression, with
probability 2λ1/N one of the team members has the opportunity to make a submission, and
it does when the expected continuation payoff from making the submission is larger than
the continuation payoff of not making it.

With probability ψ(n), none of the players can make a submission or form teams, so the
team leading the competition continues to do so and receives Lteam

s,1,n,t′ . With probability
2(nteam−1)

N
λ1, one of the players in a rival team is selected to make a submission, and each

member of the team leading the competition receives Lteam,rival team
s,1,n,t . With probability nsp

N
λ1,

one of the solo players is selected to make a submission, and each member of the team leading
the competition receives Lteam,rival sp

s,1,n,t . Lastly, with probability nsp

N
λ2, one of the solo players

can choose to form a team, and each member of the team leading the competition receives
Lteam, team forms

s,1,n . The expressions for these values are given by

Lteam,rival team
s,1,n,t = pteam,F

s,1,n,t (qteam(s)F team
s′,1,n,t′ + (1 − qteam(s))Lteam

s,1,n,t′) + (1 − pteam,F
s,1,n,t )Lteam

s,1,n,t′),

Lteam,rival sp
s,1,n,t = psp,F

s,1,n,t(qsp(s)F team
s′,0,n,t′ + (1 − qsp(s))Lteam

s,1,n,t′) + (1 − psp,F
s,1,n,t)Lteam

s,1,n,t′ ,

Lteam, team forms
s,1,n,t = pteam forms

s,1,n,t Lteam
s,1,(nsp−2,nteam+1),t′ + (1 − pteam forms

s,1,n,t )Lteam
s,1,n,t′ ,

In Lteam, team forms
s,1,n , the composition of teams and solo players changes: there will be one more

team and two fewer solo players. The last term, (1 − pteam forms
s,1,n,t )Lteam

s,1,n, corresponds to the
case where a solo player can form a team but chooses not to do so. In these expressions,
whenever a player makes a submission, the player becomes the leader of the competition
with probability qteam(s) if the player is in a team, and with probability qsp(s) if the player
is a solo player.

Following a similar logic, below we derive the value of a team follower and a solo-player
leader.

Team, Follower. The interim value of a follower team is

F team
s,ℓ,n,t = 2λ1

N
Ecsub

[
max{qteam(s)Lteam

s′,1,n,t′ + (1 − qteam(s))F team
s,ℓ,n,t′ − csub, F team

s,ℓ,n,t′}
]

+ E[V team, F
s′,ℓ′,n′,t′ |(s, ℓ, n, t)].
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where

E[V team, F
s′,ℓ′,n′,t′|(s, ℓ, n, t)] = ψ(n)F team

s,ℓ,n,t′ + 2(nteam − 1)
N

λ1F
team,rival team
s,ℓ,n,t

+n
sp

N
λ1F

team,rival sp
s,ℓ,n,t + nsp

N
λ2F

team, team forms
s,ℓ,n,t

We define F team,rival team
s,ℓ,n,t = 0 if nteam = 0, 1. For nteam = 2, ..., N/2, we define

F team,rival team
s,ℓ,n,t = ℓ

nteam − 1
[
pteam, L

s,1,n,t (qteam(s)F team
s′,1,n,t′ + (1 − qteam(s))F team

s,1,n,t′) + (1 − pteam, L
s,1,n,t )F team

s,1,n,t′

]
+n

team − 1 − ℓ

nteam − 1
[
pteam,F

s,ℓ,n,t (qteam(s)F team
s′,1,n,t′ + (1 − qteam(s))F team

s,ℓ,n,t′) + (1 − pteam,F
s,ℓ,n,t )F team

s,ℓ,n,t′

]
.

F team,rival sp
s,ℓ,n,t = 1 − ℓ

nsp

[
psp,L

s,0,n,t(qsp(s)F team
s′,0,n,t′ + (1 − qsp(s))F team

s,0,n,t′) + (1 − psp,L
s,0,n,t)F team

s,0,n,t′

]
+n

sp − 1 + ℓ

nsp

[
psp,F

s,ℓ,n,t(qsp(s)F team
s′,0,n,t′ + (1 − qsp(s))F team

s,ℓ,n,t′) + (1 − psp,F
s,ℓ,n,t)F team

s,ℓ,n,t′

]
,

F team, team forms
s,ℓ,n,t = pteam forms

s,ℓ,n,t F team
s,ℓ,(nsp−2,nteam+1),t′ + (1 − pteam forms

s,ℓ,n,t )F team
s,ℓ,n,t′ ,

In these expressions we distinguish whether the team or solo-player that can form a team is
leading the competition or not, which is indexed by the variable ℓ ∈ {0, 1}.

Solo Player, Leader. The interim value of a solo player who leads the competition is

Lsp
s,0,n,t = λ1

N
Ecsub

[
max{qsp(s)Lsp

s′,0,n,t′ + (1 − qsp(s))Lsp
s,0,n,t′ − csub, Lsp

s,0,n,t′}
]

+ E[V sp, L
s′,ℓ′,n′,t′ |(s, 0, n, t)].

where

E[V sp, L
s′,ℓ′,n′,t′ |(s, 0, n, t)] =

(
ψ(n) + λ2

N

)
Lsp

s,0,n,t′ + 2nteam

N
λ1L

sp,rival team
s,0,n,t

+(nsp − 1)
N

λ1L
sp,rival sp
s,0,n,t + (nsp − 1)

N
λ2L

sp, team forms
s,0,n,t

Here, ℓ = 0, since the current competition leader is a solo player. When the contest does
not end, the expressions for these values are given by

Lsp,rival team
s,0,n,t = pteam,F

s,0,n,t (qteam(s)F sp
s′,1,n,t′ + (1 − qteam(s))Lsp

s,0,n,t′) + (1 − pteam,F
s,0,n,t )Lsp

s,0,n,t′ ,

Lsp,rival sp
s,0,n,t = psp,F

s,0,n,t(qsp(s)F sp
s′,0,n,t′ + (1 − qsp(s))Lsp

s,0,n,t′) + (1 − psp,F
s,0,n,t)Lsp

s,0,n,t′ ,

Lsp, team forms
s,0,n,t = pteam forms

s,0,n,t Lsp
s,0,(nsp−2,nteam+1),t′ + (1 − pteam forms

s,0,n,t )Lsp
s,0,n,t′ .
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B Discussion and Additional Results

In our data, only around 10 percent of the competitors are teams, even though teams, on
average, outperform solo players. Several factors may explain the scarcity of teams, such
as matching frictions (e.g., language barriers), moral hazard concerns, credit allocation, or
asymmetric information about a potential partner, a player’s ability, commitment to work,
or preference over methodologies.

To better understand some of these issues, we present complementary evidence, which we do
not incorporate into our model but leave open for future work. First, Figure A.5 in the On-
line Appendix documents evidence suggesting assortative matching: teams are more likely to
form among similarly-ranked players, and the effect is stronger for players in top positions.
Forming a team with a “similar” player may alleviate asymmetric-information concerns (abil-
ity) and balance the “power dynamics” inside the team. Figure A.6 in the Online Appendix
shows similar assortative-matching patterns in past competitions and contributions to the
community (e.g., code sharing and message posting on public forums).

We also present evidence indicating players’ actions to gather information about potential
partners. First, Figure A.2 shows that a significant fraction of teams form right at the team-
formation deadline. This suggests that some players form teams only after gathering as
much information as possible from potential teammates. Related to this point, we use that
scores on the leaderboard are only a noisy performance signal (see the discussion in Section
2.1). We find evidence suggesting that the noise in the leaderboard makes screening costlier.
Specifically, we exploit variation in the precision of the public score as a signal of the private
score across contests to measure the impact of asymmetric information on team formation.
Table A.5 in the Online Appendix shows that both the number of submissions before team
formation and the time of the merger decrease with the precision of the information in the
leaderboard. We interpret this finding as indicating the informativeness of more precise
signals. When information is more precise, fewer signals are needed to form a more precise
posterior belief about the type of a potential teammate, which leads to earlier team formation.

This complementary evidence suggests the positive value of facilitating the formation of self-
organized teams in dynamic contests.32 First, a public leaderboard is vital since it allows
players to learn about the performance of prospective partners in the current competition.
Second, the leaderboard should be as informative as possible.33 Third, information about

32Blasco et al. (2013) shows that self-organized teams perform better than randomly-formed teams.
33The contest designer needs to consider overfitting concerns with a perfectly informative leaderboard.
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past performance should be as informative as possible.34 Fourth, the contest sponsor should
provide opportunities to signal skills beyond performance in the current competition. On
Kaggle, for example, competitors can develop and share code to analyze a dataset even if
they do not participate in a competition. Fifth, the contest sponsor should facilitate the
enforcement of prize splits among team members.35

34Kaggle allocates “medals” based on performance.
35In some competitions, it is up to the winning team to reallocate the prize money among its members. In

others, the platform allocates the prize in even shares between the team members unless the team requests
an alternative prize distribution. See, e.g., some competitions hosted in the platform DrivenData.org.
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C Additional Tables and Figures

Table A.1: Balance table: pre-merger covariates across treated and non-treated (matched) teams

Distance to max score
Number of submissions on public leaderboard
up to time of merger at time of merger

(1) (2)
Non-treated teams 18.93 2.050
Treated teams 19.08 2.051
p-value 0.818 0.993

Notes: Treated teams are teams who welcomed a new member during the competition, non-treated teams
are teams who did not change their team size during the competition. The last row of the table reports the
p-value of a differences-in-mean test.

Figure A.1: Balance of untargeted variables: pre-merger covariates across treated and non-treated
(matched) teams
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Notes: An observation is the outcome of a submission (public score, private score, or days between submis-
sion) for a team or its matched solo player in a competition. We only consider submissions before the team
formation for each team/solo-player match.

Table A.2: The impact of team-formation time on final outcomes

Number of submissions Ranking
Team Formation time 2.481∗∗∗ 7.717

(0.353) (53.172)
Observations 5687 5394
R2 0.023 0.009

Notes: An observation is a team in the matched sample. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. All
specifications include competition fixed effects. The outcome variable corresponds to the difference (in
number of submission or ranking) between teams and solo players.
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Table A.3: The impact of collaboration on scores: Team-level estimates, heterogeneity analysis
with respect to contest characteristics

(1) (2) (3) (4) (5)
Teamwork 0.060∗∗∗ 0.058∗∗∗ 0.059∗∗∗ 0.018 0.055∗∗∗

(0.009) (0.011) (0.012) (0.018) (0.010)

Teamwork * Image data 0.010
(0.020)

Teamwork * Large reward 0.003
(0.017)

Teamwork * Post 2015 0.054∗∗

(0.021)

Teamwork* Large dataset 0.038
(0.024)

Observations 3189817 3189817 3189817 3189817 3189817
R2 0.439 0.439 0.439 0.439 0.439

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a team in a competition. All specifications include team fixed effects,
competition–day fixed effects, and a second-degree polynomial of variables: total number of submissions by
all teams up until the submission time, total number of submissions by the team making the submission up
until the submission time, total number of submissions by the member of the team making the submission up
until the submission time, the submitting team’s distance to the maximum score on the public leaderboard
at the submission time, and the fraction of contest time that had elapsed at the submission time. The sample
is restricted to include submissions by treated teams that took place six weeks before or after the week in
which the team changed its team size, and it also restricts attention to teams with one or two members.
Image data is an indicator for whether the contest requires use of video or image data; large reward is an
indicator for contests with above average reward quantity; post 2015 is an indicator for contests taking place
after 2015 (when the platform incorporated new features that facilitated communication among players, e.g.,
notebooks); and large dataset is an indicator for whether the dataset has an above average size (in GBs).
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Table A.4: Empirical model estimates: Contest-specific parameters

σteam SE σsub SE β0 (q) SE N
Wikipedias Participation Challenge 0.7372 0.0340 0.2990 0.0010 -2.5714 0.2513 54
Allstate Claim Prediction Challenge 0.9881 0.0413 0.0424 0.0079 -0.7119 0.2063 77
dunnhumbys Shopper Challenge 0.9760 0.0821 0.0997 0.0070 -1.6698 0.2639 107
Give Me Some Credit 0.9338 0.0757 0.1820 0.0023 -4.9669 0.2199 90
Dont Get Kicked! 0.8174 0.0308 0.1944 0.0036 -2.9767 0.1894 96
CHALEARN Gesture Challenge 0.7624 0.0349 0.0886 0.0063 -0.7583 0.2883 59
What Do You Know? 0.8281 0.0378 0.1649 0.0026 -3.2192 0.2795 108
Photo Quality Prediction 0.9808 0.0641 0.0781 0.0288 -2.2559 0.2445 138
The Hewlett Foundation: Automated Essay Scoring 0.5469 0.0432 0.1763 0.0001 -2.6569 0.2443 96
KDD Cup 2012, Track 2 0.9163 0.0317 0.3689 0.0021 -2.8153 0.2414 48
Predicting a Biological Response 0.7063 0.0254 0.2117 0.0049 -4.5030 0.2054 86
Online Product Sales 0.8425 0.0533 0.1153 0.0019 -3.4666 0.2399 136
Belkin Energy Disaggregation Competition 1.1112 0.0516 0.0001 1.2204 -1.5078 0.1687 114
Merck Molecular Activity Challenge 1.1375 0.0316 0.0725 0.0086 -2.1444 0.2094 111
Predict Closed Questions on Stack Overflow 0.6024 0.0207 0.2244 0.0034 -3.1526 0.2536 73
Job Salary Prediction 0.5186 0.0316 0.2160 0.0004 -4.2832 0.2913 84
The Marinexplore and Cornell University Whale Detection Challenge 0.6046 0.0188 0.1457 0.0021 -2.8478 0.2377 115
KDD Cup 2013 - Author-Paper Identification Challenge (Track 1) 0.7600 0.0233 0.2404 0.0031 -3.3397 0.1989 79
KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 0.9399 0.0523 0.3025 0.0057 -2.4060 0.1752 57
Packing Santas Sleigh 0.7832 0.1022 0.0012 0.1024 -2.7145 0.2091 124
Higgs Boson Machine Learning Challenge 0.5912 0.0267 0.1865 0.0041 -4.4360 0.1970 93
Liberty Mutual Group - Fire Peril Loss Cost 0.6569 0.0078 0.0832 0.0011 -3.4253 0.2057 165
Helping Santas Helpers 0.4613 0.0383 0.0127 0.0042 -1.4426 0.1547 82
March Machine Learning Mania 2015 0.7870 0.0197 0.3382 0.0018 -3.2821 0.3727 54
Otto Group Product Classification Challenge 0.4291 0.0422 0.0580 0.0025 -5.3629 0.1854 186
ICDM 2015: Drawbridge Cross-Device Connections 0.7009 0.0329 0.0026 0.0117 -1.2911 0.2068 113
Caterpillar Tube Pricing 0.4549 0.0323 0.1307 0.0014 -4.9156 0.1811 126
Liberty Mutual Group: Property Inspection Prediction 0.4527 0.0367 0.0931 0.0011 -4.6258 0.1701 154
Springleaf Marketing Response 0.4481 0.0290 0.1266 0.0001 -4.4269 0.1761 129
Truly Native? 0.5014 0.0186 0.0824 0.0028 -3.1990 0.2677 157
The Allen AI Science Challenge 0.6239 0.0098 0.2061 0.0091 -1.3670 0.4264 94
Santas Stolen Sleigh 0.5105 0.0104 0.0608 0.0041 -2.6891 0.1333 92
Second Annual Data Science Bowl 0.6444 0.0201 0.2063 0.0078 -3.5449 0.4561 88
BNP Paribas Cardif Claims Management 0.9404 0.0853 0.1681 0.0008 -5.6184 0.1826 97
Home Depot Product Search Relevance 0.6244 0.0080 0.1326 0.0020 -4.1634 0.1618 128
Santander Customer Satisfaction 0.6742 0.0315 0.1935 0.0049 -4.9469 0.1476 85
Expedia Hotel Recommendations 0.7309 0.0250 0.0704 0.0038 -3.9245 0.1934 178
Ultrasound Nerve Segmentation 0.7001 0.0178 0.1959 0.0032 -3.6111 0.2230 93
Draper Satellite Image Chronology 1.0776 0.0028 0.2040 0.0028 -2.3338 0.3217 88
Predicting Red Hat Business Value 0.7244 0.0347 0.0816 0.0026 -4.0519 0.1522 167
TalkingData Mobile User Demographics 0.5304 0.0398 0.1297 0.0029 -4.4402 0.1562 127
Outbrain Click Prediction 0.8250 0.0323 0.1861 0.0014 -2.7646 0.1993 99
The Nature Conservancy Fisheries Monitoring 0.4331 0.0234 0.2576 0.0004 -4.1177 0.3615 69
Dstl Satellite Imagery Feature Detection 0.7837 0.3830 0.0030 0.2987 -0.4366 0.1655 109
Intel & MobileODT Cervical Cancer Screening 0.3207 0.0111 0.2771 0.0001 -5.1303 0.7199 53
Cdiscounts Image Classification Challenge 1.1205 0.0302 0.1663 0.0100 -2.1434 0.1914 101
Recruit Restaurant Visitor Forecasting 0.5957 0.0104 0.1939 0.0036 -5.6364 0.1947 84
Statoil/C-CORE Iceberg Classifier Challenge 0.7204 0.0320 0.1438 0.0007 -5.3231 0.1809 114
TrackML Particle Tracking Challenge 0.6868 0.0182 0.0191 0.0171 -2.2821 0.1852 142
Santa Gift Matching Challenge 0.5233 0.0211 0.2443 0.0012 -3.8311 0.2483 77
Google Cloud & NCAA ML Competition 2018-Mens 0.6232 0.0235 0.3723 0.0097 -3.8825 0.3944 45
Google Cloud & NCAA ML Competition 2018-Womens 0.9736 0.0440 0.3123 0.0060 -4.5706 0.7181 52
Google AI Open Images - Object Detection Track 0.7578 0.0355 0.1633 0.0049 -1.5454 0.2206 77
Google AI Open Images - Visual Relationship Track 1.3398 0.0805 0.1764 0.0018 -0.2932 0.3390 107
Airbus Ship Detection Challenge 0.4881 0.0484 0.0840 0.0011 -3.6866 0.2069 162
Peking University/Baidu - Autonomous Driving 0.7695 0.0042 0.2370 0.0158 -2.3647 0.2467 77
TGS Salt Identification Challenge 0.3730 0.0013 0.1176 0.0024 -4.6314 0.1716 137
Quick, Draw! Doodle Recognition Challenge 0.5509 0.0041 0.1592 0.0003 -4.2359 0.1963 116
RSNA Pneumonia Detection Challenge 0.7321 0.0258 0.2913 0.0045 -0.7809 0.4059 66
Human Protein Atlas Image Classification 0.9893 0.0378 0.2128 0.0034 -3.4999 0.1610 91
Traveling Santa 2018 - Prime Paths 0.6300 0.0178 0.2540 0.0042 -3.6389 0.1453 72
Google Cloud & NCAA ML Competition 2019-Mens 0.8570 0.0375 0.3449 0.0062 -4.1496 0.3301 49
Instant Gratification 0.4420 0.0064 0.1786 0.0027 -5.3475 0.1730 105
Predicting Molecular Properties 0.5432 0.0024 0.2743 0.0022 -4.7078 0.1700 68
SIIM-ACR Pneumothorax Segmentation 0.7157 0.0215 0.2234 0.0051 -3.8427 0.3802 83
APTOS 2019 Blindness Detection 0.2581 0.0129 0.1735 0.0021 -5.7479 0.2105 87
Lyft 3D Object Detection for Autonomous Vehicles 0.6575 0.0255 0.1940 0.0195 -1.0558 0.2075 67
Santas Workshop Tour 2019 0.3915 0.0285 0.2427 0.0001 -5.2369 0.2673 68

Notes: SE stands for asymptotic standard errors. Numbers smaller than 1e-4 are rounded up to that value.
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Figure A.2: Distribution of Timing of Team Formation
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Notes: An observation is a team. The time is measured relative to the team-formation deadline for each
competition. There is spike of team formation exactly at this deadline.
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Figure A.3: Average cost of team formation.
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Note: An observation is contest. Panel A: “Expected cost” is the unconditional expected cost of team forma-
tion (i.e., given the distribution of costs we use in our model, the average cost is given by σ/(1 + σ)). Panel
B: “Expected cost (in USD).” The model normalizes the value of the prize pool to 1, so to express costs in
USD we have to scale the costs up by the size of the prize. Panel C: “Expected conditional cost of team
formation (in USD)” is the expected cost conditional on choosing to form a team. Computing this moment is
computationally intensive. A middle-ground result is an approximation at time 0: Initially, players are sym-
metric, the gains from forming a team are bounded by B = (qteam(s0)− qsp(s0)) ·Prize/(number of players),
where qj(s0) is the probability of surpassing the maximum score evaluated at the initial score for a player
of type j. Thus, we can compute the conditional mean at time zero explicitly: E[c|c < B] = B · σ/(σ + 1).
We report this value for every contest.
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Figure A.4: Properties of conditional choice probabilities
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Notes: The figure plots equilibrium conditional choice probabilities computed using model estimates for one
particular contest: the “Don’t Get Kicked!” (Predict if a car purchased at auction is a lemon) contest. In
Panels A and C, time is fixed at t = 320, the leader is a follower ℓ = 0, and the score is either the second
(low) or tenth (high) value of the score grid.

Figure A.5: Team member heterogeneity at the time of the merger
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Notes: The figure plots the distance of each team member to the leader at the moment of forming a team.
These figures restrict attention to teams in which both members had submitted at least 5 submissions prior
to the merger.
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Figure A.6: Are players matching up with players who have similar observed outcomes?

A) Number of kernels uploaded in the past B) Number of votes earned by kernels

C) Number of past messages on D) Number of past participations
the discussion board in the top 40

Notes: An observation is a multiplayer team. Panel A plots the number of kernels (also known as notebooks)
posted by the team members in the past. Kernels are code that players can post so that any user can make
use of it. Panel B plots the number of votes earned by the kernels posted by the different team members.
Panel C plots the number of discussion board messages posted by the team members in the past. Panel D
plots the number of past participations where the team members finished in the top 30 positions.
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Table A.5: The impact of performance feedback noise on team formation outcomes: Player-level
estimates

Number of submissions Time of
prior to team formation (in logs) team formation (in logs)

(1) (2)
Feedback precision (in St. Dev.) -0.037∗∗ -0.062∗∗∗

(0.016) (0.018)
Observations 4,410 4,410
R2 0.201 0.043

Notes: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a competition–player combination over the sample of team players. “Feedback precision” is a measure in
[0,100] readily available in the data. When it is 100, the public and private scores take the same value; when
it is 0, the public score is uncorrelated with the private score (see Section 2). We standardize it to simplify
the interpretation of our results (the mean and standard deviation before standardizing are 31.6 and 23.4,
respectively). All specifications include contest-level controls (i.e., total reward quantity, number of prizes,
maximum daily submissions, contest length, dataset size, image data indicator) and player-level controls
(i.e., public score of first submission, number of past competitions). Column 1 further controls for the time
of the team’s formation, where time is the fraction of the contest time elapsed at the time of team formation.

xv



D Kaggle Users Interviews

To complement our analysis, we informally interview some Kaggle participants with team-
work experience to inquire about team formation, asking them: “How concerned are you
that your teammate will not be a good match?” We reproduce verbatim answers below,
which align with our findings on screening potential teammates.

“In general, teamwork on kaggle works the following way: At the beginning of
the competition everybody participates alone. A few weeks before the end of the
competition, you look for somebody close to you on a leaderboard and team up
with them. You share your solutions, discuss all the ideas, and decide what to do
next. Sometimes everybody brainstorms and works on the new ideas together,
sometimes everybody continues to improve their solutions, and then combine
them.”

“I just want to team up with someone smart who I’ll enjoy collaborating with.
If they’ve done well in other competitions, that’s good enough. If they are doing
well in the same competition, it could be do to noise.”

“I would team up with a person only if I am very sure that I will learn something
from that person. I would check that person LinkedIn profile and would also
have conversations with that person over call before teaming up. LinkedIn and
their previous kaggle work can serve as good indicator. Also during the call, I
ask them what have they done so far in the competition. I decide based on the
answers which they give to this question”

“previous experience at kaggle, posts in the current competition, and the current
results. Also it is very important if I already participated in another competition
with the person. So I know the capabilities of the person, and how hard he/she
can work.”
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E Dealing with Selection in Team Formation

In the main text, we seek to measure the performance of self-organized teams relative to solo
players. We find a significant performance increase after the team has formed, relative to
the performance of solo players. While the focus of our paper is the impact of self-organized
teams on contest outcomes, one may ask whether teamwork in general, not only when teams
are self-organized, has a causal impact on performance.

To causally identify the impact of teamwork on scores, treatment assignment must be uncon-
founded. That is, the probability that a solo player forms a team may depend on player-level
state variables (xi,j,c,t), and the player’s ability to produce high scores (captured in the player-
level fixed effects), but not on the potential outcomes (Imbens and Rubin, 2015). Under this
assumption, β can be identified by comparing the observed scores of treated and non-treated
teams that have similar state variables.

Unconfoundedness accommodates the cases in which a player’s decision to form a team can
be explained based on observable state variables (e.g., their position in the leaderboard) or
performance-unrelated unobservables (e.g., the size of their social network). This assump-
tion, however, does not accommodate the case in which performance-related unobservables
in the error term affect the decision to form a team. For example, a violation of the un-
confoundedness assumption would occur if players had perfect foresight about the gains of
teamwork, and these gains are heterogeneous across players. In this case, team formation
would only occur among players expecting sufficiently large gains, and these gains would at
least in part appear in the error term. This is likely to be the case with self-organized teams.

To deal with selection, we implement a two-step, Heckman-style selection bias correction
(Heckman, 1979) similar to the one used by Lee (1978). In the first step, we estimate a
player-level probit model for the probability of forming a team at time t given a rich set of
state variables and an indicator for whether the player is eligible to form a team.36 Players
are eligible to form a team if they join the competition before a preset deadline to form
teams. This establishes the relevance of the instrument.

Is the instrument valid? Players must join the competition to download the data and learn
about the rules of the competition (one of which is the deadline to form teams). Lemus and
Marshall (2021) document that the distribution of entry times of players is roughly uniform
throughout a contest, suggesting that players learn about a competition at different times

36Specifically, for every contest, we estimate Pr(formed teami,j,c,t = 1) = Φ(α + 1{elegible}i,j,c,tβ +
h(xi,j,c,t, δ)), where i is a player; the notation is the same as in Equation 1.
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and likely join for reasons that are unrelated to the potential benefits of team formation.

Although we acknowledge that entering the competition earlier can have an impact on the
performance of a player, we control for measures of the player’s progress in the contest (e.g.,
number of submissions up to time t or distance to the leader at time t). We thus believe
that among similar players that entered at similar times (with controls for progress), the
eligibility indicator is a plausibly exogenous shifter of the probability of forming a team.

We use the probit estimates to compute the Mills ratio for every player–time combination,
which captures the expected value of unobservables governing the decision to form a team
(conditional on treatment). We then incorporate the Mills ratio estimates in a version of
Equation 1. This approach has the benefit of relaxing the requirement of the treatment
indicator being uncorrelated with performance-related unobservables (i.e., it relaxes the un-
confoundness assumption).

Table A.6 presents the results of a correction along the lines of Lee (1978), which relaxes the
unconfoundness assumption. Columns 1 and 2 replicate Table 3 with two differences. The
first one is that we replace the competitor-level fixed effects with player-level fixed effects,
as the Mills ratio estimates are constructed at the individual level. The second difference
is that we restrict the sample to those players for which we can compute the Mills ratio
(column 2). Columns 1 and 2 show that the gains of teamwork are smaller than those in
Table 3, possibly because the player-level fixed effects are more flexible and can absorb any
changes in the composition of submission authorship caused by teamwork. Column 3 shows
the point estimates after we implement the selection correction, which has a minor effect
on the point estimate (point estimates are within one standard error of each other). The
impact of teamwork on scores remains economically relevant after we correct for selection.

Table A.6: The impact of collaboration on scores: Player-level estimates

Score
(1) (2) (3)

Teamwork 0.042∗∗∗ 0.035∗∗∗ 0.044∗∗∗

(0.008) (0.008) (0.009)

Mills ratio 0.376∗∗

(0.161)
Observations 3,109,136 2,790,553 2,790,553
R2 0.371 0.394 0.395

Notes: Standard errors clustered at the team-level in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An
observation is a submission made by a player in a competition.

xviii



One might assume that teams would form early to maximize the benefits of collaboration
if they anticipate significant advantages. However, we do not find evidence to support
this assumption. Table A.2 in the Online Appendix shows that the impact of teamwork
on performance is unaffected by the timing of the team formation. Moreover, on average,
players who form teams have sent 19 submissions before the team forms.

These pieces of evidence combined point towards a plausible causal relationship between
teamwork and productivity.
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